Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "fe4a8165-2de1-469f-a8ba-a66779582704"}, "_deposit": {"id": "845", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "845"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/845", "sets": ["1582967046255", "user-um"]}, "communities": ["um"], "control_number": "845", "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Propagation Property for Nonlinear Parabolic Equations of p-Laplacian-Type1", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "We study propagation property for one-dimensional nonlinear\r diffusion equations with convection-absorption, including the prototype model\r ∂t(um) − ∂x(|∂xu|p−1∂xu) − μ|∂xu|q−1∂xu + λuk = 0,\r where m, p, q, k \u003e 0, and n-dimensional simplified variant\r ∂t(um) − Δp+1u = 0,\r where Δp+1u = div (|∇u|p−1∇u). Among the conclusions, we make complete\r classification of the parameters in the first equation to distinguish its propagation\r property. For the second equation we rigorously prove that perturbation\r of the nonnegative solutions propagates at finite speed if and only if m \u003c p."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "propagation"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2020-05-05"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Propagation property for Nonlinear Parabolic Equations of p- Laplacian Type.pdf", "filesize": [{"value": "246 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 246000.0, "url": {"url": "https://meral.edu.mm/record/845/files/Propagation property for Nonlinear Parabolic Equations of p- Laplacian Type.pdf"}, "version_id": "cfdd3286-a8bd-4f34-8bcd-bac7eaea4c5b"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "12", "subitem_journal_title": "Int. Journal of Math. Analysis", "subitem_volume": "3"}]}, "item_1583103147082": {"attribute_name": "Conference papaers", "attribute_value_mlt": [{}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_supervisor(s)": []}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Than Sint Khin"}, {"subitem_authors_fullname": "Ning Su"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Journal article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2009"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "https://umoar.mu.edu.mm/handle/123456789/281"}, "item_title": "Propagation Property for Nonlinear Parabolic Equations of p-Laplacian-Type1", "item_type_id": "21", "owner": "1", "path": ["1582967046255"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000000845", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2020-03-05"}, "publish_date": "2020-03-05", "publish_status": "0", "recid": "845", "relation": {}, "relation_version_is_last": true, "title": ["Propagation Property for Nonlinear Parabolic Equations of p-Laplacian-Type1"], "weko_shared_id": -1}
  1. University of Mandalay
  2. Department of Mathematics

Propagation Property for Nonlinear Parabolic Equations of p-Laplacian-Type1

http://hdl.handle.net/20.500.12678/0000000845
http://hdl.handle.net/20.500.12678/0000000845
94e882fa-e9d9-4e92-aaa4-6ae24b1e95c4
fe4a8165-2de1-469f-a8ba-a66779582704
None
Preview
Name / File License Actions
Propagation Propagation property for Nonlinear Parabolic Equations of p- Laplacian Type.pdf (246 Kb)
Publication type
Journal article
Upload type
Publication
Title
Title Propagation Property for Nonlinear Parabolic Equations of p-Laplacian-Type1
Language en
Publication date 2009
Authors
Than Sint Khin
Ning Su
Description
We study propagation property for one-dimensional nonlinear
diffusion equations with convection-absorption, including the prototype model
∂t(um) − ∂x(|∂xu|p−1∂xu) − μ|∂xu|q−1∂xu + λuk = 0,
where m, p, q, k > 0, and n-dimensional simplified variant
∂t(um) − Δp+1u = 0,
where Δp+1u = div (|∇u|p−1∇u). Among the conclusions, we make complete
classification of the parameters in the first equation to distinguish its propagation
property. For the second equation we rigorously prove that perturbation
of the nonnegative solutions propagates at finite speed if and only if m < p.
Keywords
propagation
Identifier https://umoar.mu.edu.mm/handle/123456789/281
Journal articles
12
Int. Journal of Math. Analysis
3
Conference papaers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-03-08 09:02:00.241740
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL