MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "fe4a8165-2de1-469f-a8ba-a66779582704"}, "_deposit": {"id": "845", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "845"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/845", "sets": ["1582967046255", "user-um"]}, "communities": ["um"], "control_number": "845", "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Propagation Property for Nonlinear Parabolic Equations of p-Laplacian-Type1", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "We study propagation property for one-dimensional nonlinear\r diffusion equations with convection-absorption, including the prototype model\r ∂t(um) − ∂x(|∂xu|p−1∂xu) − μ|∂xu|q−1∂xu + λuk = 0,\r where m, p, q, k \u003e 0, and n-dimensional simplified variant\r ∂t(um) − Δp+1u = 0,\r where Δp+1u = div (|∇u|p−1∇u). Among the conclusions, we make complete\r classification of the parameters in the first equation to distinguish its propagation\r property. For the second equation we rigorously prove that perturbation\r of the nonnegative solutions propagates at finite speed if and only if m \u003c p."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "propagation"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2020-05-05"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Propagation property for Nonlinear Parabolic Equations of p- Laplacian Type.pdf", "filesize": [{"value": "246 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 246000.0, "url": {"url": "https://meral.edu.mm/record/845/files/Propagation property for Nonlinear Parabolic Equations of p- Laplacian Type.pdf"}, "version_id": "cfdd3286-a8bd-4f34-8bcd-bac7eaea4c5b"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "12", "subitem_journal_title": "Int. Journal of Math. Analysis", "subitem_volume": "3"}]}, "item_1583103147082": {"attribute_name": "Conference papaers", "attribute_value_mlt": [{}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_supervisor(s)": []}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Than Sint Khin"}, {"subitem_authors_fullname": "Ning Su"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Journal article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2009"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "https://umoar.mu.edu.mm/handle/123456789/281"}, "item_title": "Propagation Property for Nonlinear Parabolic Equations of p-Laplacian-Type1", "item_type_id": "21", "owner": "1", "path": ["1582967046255"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000000845", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2020-03-05"}, "publish_date": "2020-03-05", "publish_status": "0", "recid": "845", "relation": {}, "relation_version_is_last": true, "title": ["Propagation Property for Nonlinear Parabolic Equations of p-Laplacian-Type1"], "weko_shared_id": -1}
Propagation Property for Nonlinear Parabolic Equations of p-Laplacian-Type1
http://hdl.handle.net/20.500.12678/0000000845
http://hdl.handle.net/20.500.12678/000000084594e882fa-e9d9-4e92-aaa4-6ae24b1e95c4
fe4a8165-2de1-469f-a8ba-a66779582704
Name / File | License | Actions |
---|---|---|
Propagation property for Nonlinear Parabolic Equations of p- Laplacian Type.pdf (246 Kb)
|
|
Publication type | ||||||
---|---|---|---|---|---|---|
Journal article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Propagation Property for Nonlinear Parabolic Equations of p-Laplacian-Type1 | |||||
Language | en | |||||
Publication date | 2009 | |||||
Authors | ||||||
Than Sint Khin | ||||||
Ning Su | ||||||
Description | ||||||
We study propagation property for one-dimensional nonlinear diffusion equations with convection-absorption, including the prototype model ∂t(um) − ∂x(|∂xu|p−1∂xu) − μ|∂xu|q−1∂xu + λuk = 0, where m, p, q, k > 0, and n-dimensional simplified variant ∂t(um) − Δp+1u = 0, where Δp+1u = div (|∇u|p−1∇u). Among the conclusions, we make complete classification of the parameters in the first equation to distinguish its propagation property. For the second equation we rigorously prove that perturbation of the nonnegative solutions propagates at finite speed if and only if m < p. |
||||||
Keywords | ||||||
propagation | ||||||
Identifier | https://umoar.mu.edu.mm/handle/123456789/281 | |||||
Journal articles | ||||||
12 | ||||||
Int. Journal of Math. Analysis | ||||||
3 | ||||||
Conference papaers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |