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Department of Mathematical Sciences
Tsinghua University, Beijing 100084, P. R. China
shanst04@mails.tsinghua.edu.cn (Than Sint Khin)

nsu@math.tsinghua.edu.cn (N. Su)

Abstract. We study propagation property for one-dimensional nonlinear
diffusion equations with convection-absorption, including the prototype model

∂t(u
m) − ∂x(|∂xu|p−1∂xu) − μ|∂xu|q−1∂xu + λuk = 0,

where m, p, q, k > 0, and n-dimensional simplified variant

∂t(u
m) − Δp+1u = 0,

where Δp+1u = div (|∇u|p−1∇u). Among the conclusions, we make complete
classification of the parameters in the first equation to distinguish its propaga-
tion property. For the second equation we rigorously prove that perturbation
of the nonnegative solutions propagates at finite speed if and only if m < p.

Mathematics Subject Classification: 35K65, 35K55, 35B20

Keywords: propagation, diffusion, convection, super- and sub-solutions,
parabolic p-Laplacian equation

1. Introduction

Consider the following nonlinear parabolic equation

∂tϕ(u) − ∂x(|∂xu|p−1∂xu) − A(|∂xu|)∂xu + B(u) = 0,(1.1)

where p > 0, functions ϕ(z), A(z), and B(z) are continuous. In addition, ϕ(z)
is increasing, and B(z) is nonnegative.

This equation models diffusion-convection-absorption process in one dimen-
sion. Degenerate-singular diffusion occurs when p �= 1, ϕ′(z) = 0 or ϕ′(z) =
+∞ at some z ≥ 0, while singular convection appears if A(|z|) → ∞ as z → 0.

1This work is partially supported by NSFC under the grant 10471072.
2Corresponding author
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Moreover, equation (1.1) is also related with n-dimensional nonlinear diffusion
equation

∂tϕ(u) − Δp+1u = 0 in R
n × (0,∞),(1.2)

where Δp+1u := div (|∇u|p−1∇u). In fact, if a solution to (1.2) is of radially

symmetric form, i.e., u(x, t) = u(r, t), where r = |x| =
√

x2
1 + x2

2 + · · · + x2
n,

then the equation becomes

∂tϕ(u) − ∂r(|∂ru|p−1∂ru) − (n − 1)r−1|∂ru|p−1∂ru = 0,(1.3)

of the form like equation (1.1).
In this work we are interested in propagation properties, such as finite- or

infinite-speed propagation of perturbation for the nonnegative solutions. There
are many authors who studied propagation property for linear and nonlinear
parabolic equations in one-dimensional case [3, 5, 7, 9, 10, 12, 14, 15], and
multi-dimensional case [2, 6, 11, 16, 17, 18, 19]. As we know, however, the
convection term studied in most literature is unknown-dependent [5, 6, 11, 14,
15], not derivative-dependent like (1.1).

For the special equation of (1.2),

∂t(u
m) − Δp+1u = 0 in R

n × (0,∞),(1.4)

one has long believed that the sufficient and necessary condition for finite speed
propagation of perturbation of solutions is m < p. This has been proved in one-
dimensional case (cf. [3]). However, we have never found its complete multi-
dimensional proof in the literature, especially for the necessity of condition
m < p, even though the special case p = 1 was indeed investigated. In the
present paper we prove general results for equation (1.2) which imply this
sufficient and necessary condition as special conclusion in particular situation.

As for the existence of solutions to various initial-boundary value problems
for nonlinear diffusion equations, with or without convection-absorption, one
may see [1, 3, 7, 8, 13, 18] and references therein.

Throughout this paper we imposed the following conditions:

(1) ϕ(z) ∈ C(R+) ∩ C1(R+), ϕ(0) = 0, ϕ′(z) > 0 for z > 0;
(2) A(z) ∈ C(R+);
(3) B(z) ∈ C(R+), B(0) = 0, B(z) ≥ 0 for z ≥ 0.

The rest of article is organized as follows: In Section 2 we introduce some
notations and outline working device in the present paper. The main results
are demonstrated in Section 3 and Section 4, respectively for one-dimensional
equation (1.1) and for n-dimensional variant (1.2).

2. Some Definitions and Working Machinery

First of all we recall the notation of solutions.
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Definition 2.1. A function u(x, t) is called a super-(sub-) solution of equation
(1.1) in Q, where Q = (x1, x2)× (0, T ] with 0 ≤ x1 < x2 ≤ ∞ and 0 < T < ∞,
if

(a) u ∈ C(Q), u ≥ 0 in Q, ∂xu ∈ C(Q), and
(b) in the sense of distribution

∂tϕ(u) − ∂x(|∂xu|p−1∂xu) − A(|∂xu|)∂xu + B(u) ≥ 0 (≤ 0).

u(x, t) is said to be a solution if it is both a super- and sub-solution.

Next we explain some terms to describe propagation properties for solutions.

Definition 2.2. It is said that the equation (1.1) admits the finite speed prop-
agation of perturbation (FSP for short) if for every solution u(x, t) in QT =
(0,∞) × (0, T ) with some T > 0, satisfying

u(x, 0) = 0 for x ≥ a

with some a ≥ 0, there exists τ ∈ (0, T ) and r(t) ∈ (0,∞), t ∈ [0, τ ], such that

u(x, t) = 0 for x ≥ r(t).

Definition 2.3. It is said that the equation (1.1) admits the infinite speed prop-
agation of perturbation (ISP for short) if for every solution u(x, t) in QT ,
satisfying u(0, 0) > 0, there exists τ ∈ (0, T ) such that

u(x, t) > 0 for all x > 0, 0 < t < τ.

Remark 2.4. Above-mentioned propagation properties are all concerned for x-
forward direction. Obviously, for x-backward direction propagation properties
could be described similarly.

In order to characterize propagation properties we make use of super- and
sub-solution method. To this purpose comparison principle plays an important
role.

Lemma 2.5 (Comparison Principle). Let u1(x, t) and u2(x, t) be super-
and sub-solutions of (1.1) in Q, respectively, and u1 ≥ u2 on Q \ Q. Then
u1 ≥ u2 on the whole Q. Here Q = (x1, x2) × (0, T ] as above.

With regard to the study of comparison principle see, e.g., [1, 4, 14].
Now we show two sufficient conditions for FSP and ISP properties, respec-

tively. The argument also explains our main idea to construct super- and
sub-solutions.

Lemma 2.6. If there exist ω ∈ R, σ > 0, f(z) ∈ C(R+) ∩ C1(R+) satisfying
f(0) = 0, f ′(z) > 0 for 0 < z < σ, and

∫ σ

0
dz

f(z)
< ∞, such that

ωϕ′(z) + A(f(z)) − ([f(z)]p)′ + B(z)/f(z) ≥ 0(2.1)

in the interval 0 < z < σ, then equation (1.1) admits FSP property.
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Proof. Let u(x, t) be a solution of (1.1) in QT = (0,∞) × (0, T ), and satisfy

u(x, 0) = 0 for x ≥ a ≥ 0.

In order to show FSP property of u we construct a super-solution as follows.
Let z(ζ) solve the following equation:∫ z

0

ds

f(s)
= ζ+ for ζ ≤ ζ0 :=

∫ σ

0

ds

f(s)
,(2.2)

where ζ+ = max{ζ, 0}. Then z′(ζ) = f(z), and 0 ≤ z(ζ) ≤ σ for ζ ≤ ζ0.
Without loss of generality, let ω > 0 in (2.1). Set x0 ∈ (0, ζ0), and t0 =

(ζ0 − x0)/ω. Now consider function v(x, t) = z(ωt − x + x0 + a) in Qt0 =
(a,∞) × (0, t0).

We have 0 ≤ v(x, t) ≤ z(ωt0 + x0) = σ. From (2.1) and (2.2) it is not hard
to verify that v(x, t) is a super-solution of (1.1) in Qt0 . In fact,

∂tϕ(v)−∂x(|∂xv|p−1∂xv) − A(|∂xv|)∂xv + B(v)

=ϕ′(z)ωf(z) − ([f(z)]p)′f(z) + A(f(z))f(z) + B(z)

=f(z){ϕ′(z)ω − ([f(z)]p)′ + A(f(z)) + B(z)/f(z)} ≥ 0.

Besides, we see that

u(x, 0) = 0 ≤ v(x, 0) = z(−x + x0 + a) for x ≥ a;

and by the continuity there exists τ ∈ (0, min{t0, T}) so that

u(a, t) ≤ z(ωt + x0) = v(a, t) for 0 ≤ t ≤ τ.

According to the comparison principle we obtain that u ≤ v on Qτ = [a,∞]×
[0, τ ]. Particularly,

u(x, t) = 0 for x ≥ ωt + x0 + a, 0 ≤ t ≤ τ,

i.e., FSP is admitted.

Lemma 2.7. Assume that A(z) is non-increasing. If for every ω ∈ R there
exists σ > 0, f ∈ C(R+) ∩ C1(R+), satisfying f(0) = 0, f ′(z) > 0 for 0 < z <
σ, and

∫ σ

0
dz

f(z)
= ∞, such that

ωϕ′(z) + A(f(z)) − ([f(z)]p)′ + B(z)/f(z) ≤ 0 for 0 < z ≤ σ,(2.3)

then (1.1) admits ISP property.

Proof. Let u(x, t) be a solution of (1.1) in QT with u(0, 0) > 0. Then by the
continuity there exists τ > 0 so that

inf
0<t<τ

u(0, t) = η > 0.

We claim that u > 0 in Qτ .
Fix an arbitrary point (x0, t0) ∈ Qτ , w = 2x0/t0, and choose σ ∈ (0, η] such

that
∫ σ

0
dz

f(z)
= ∞ and (2.3) is fulfilled. Denote

f̃(z) := ([f(z)]p + εpzβp)
1
p ,
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where β ∈ (0, 1) is fixed and ε > 0 will be chosen later. Obviously, f̃(z) ≥ f(z),

and f̃(z) ≥ εzβ for z > 0, and so
∫ σ

0
dz

f̃(z)
< ∞. Moreover, from (2.3) it is easy

to see that

ωϕ′(z) + A(f̃(z)) − ([f̃(z)]p)′ + B(z)/f̃(z)(2.4)

≤ ωϕ′(z) + A(f(z)) − ([f(z)]p + εpzβp)′ + B(z)/f(z)

≤ ωϕ′(z) + A(f(z)) − ([f(z)]p)′ + B(z)/f(z) ≤ 0, 0 < z < σ.

Since
∫ σ

0
dz

f(z)
= ∞, we can choose ε > 0 so small that

ζ0 :=

∫ σ

0

ds

f̃(s)
≥ ωτ.

Define function z̃(ζ) by the following integral equality∫ z̃

0

ds

f̃(s)
= ζ+ for ζ ≤ ζ0.(2.5)

Let v(x, t) = z̃(ωt−x). Then from (2.4), (2.5) it follows that in Qτ function
v(x, t) is a sub-solution of (1.1) and 0 ≤ v(x, t) ≤ z̃(ωτ) ≤ σ. In addition,

v(x, 0) = z̃(−x) = 0 ≤ u(x, 0) for x ≥ 0,

v(0, t) ≤ σ ≤ u(0, t) for 0 ≤ t ≤ τ.

Therefore, by the comparison principle, v ≤ u in Qτ . In particular,

u(x0, t0) ≥ v(x0, t0) = z̃(ωt0 − x0) > 0,

since ωt0 − x0 = x0 > 0. From the arbitrariness of (x0, t0) in Qτ the lemma
follows.

3. One-Dimensional Equations

We start with the equation with no absorption

∂tϕ(u) − ∂x(|∂xu|p−1∂xu) − A(|∂xu|)∂xu = 0.(3.1)

Theorem 3.1. (1) If for every ω ∈ R there exists a σ > 0 so that

ωϕ′(z) + A(z) ≤ pzp−1, 0 < z ≤ σ,

then equation (3.1) admits ISP property.
(2) Equation (3.1) admits FSP property if for some σ > 0,

A(z) ≥ 0 in (0, σ), and

∫ σ

0

dz

[ϕ(z)]1/p
< +∞.

Proof. (1): Choose f(z) = z , i.e.,
∫ σ

0
dz

f(z)
= ∞. Then for any ω we have,

ωϕ′(z) + A(f(z)) − ([f(z)]p)′ = ωϕ′(z) + A(z) − (zp)′ ≤ 0, 0 < z ≤ σ,

for some σ > 0. The conclusion then follows from Lemma 2.7.
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(2): Let f(z) = [ϕ(z)]1/p, then

([f(z)]p)′ = ϕ′(z) ≤ A(f(z)) + ϕ′(z)

holds at least for z > 0 small enough, and thus, by Lemma 2.6, FSP is admit-
ted.

Now we consider the equation with absorption but no convection

∂tϕ(u) − ∂x(|∂xu|p−1∂xu) + B(u) = 0.(3.2)

This part of results comes from [15], but more accurate and with some im-
provement.

Theorem 3.2. (1) Equation (3.2) admits the finite speed propagation if there
exist a ≥ 0, b ≥ 0, and σ > 0, so that∫ σ

0

dz

{a[ϕ(z)](p+1)/p + b
∫ z

0
B(s)ds}1/(p+1)

< ∞.(3.3)

In particular, FSP occurs if∫ σ

0

dz

[
∫ z

0
B(s)ds]1/(p+1)

< ∞ or

∫ σ

0

dz

[ϕ(z)]1/p
< ∞.

(2) Equation (3.2) admits the infinite speed propagation if for all ω ≥ 0, and
σ > 0 (sufficiently small), we have∫ σ

0

dz

{ωϕ(z) + [
∫ z

0
B(s)ds]p/(p+1)}1/p

= ∞.(3.4)

Note that in this case∫ σ

0

dz

[
∫ z

0
B(s)ds]1/(p+1)

= ∞ and

∫ σ

0

dz

[ϕ(z)]1/p
= ∞.

Proof. (1): Let

f(z) =

{
[ωϕ(z)]

p+1
p +

p + 1

p

∫ z

0

B(s)ds

} 1
p+1

.

The condition (3.3) implies that
∫ σ

0
dz/f(z) < ∞ for some ω ≥ 0. Moreover,

it is clear that f(z) ≥ [ωϕ(z)]1/p, and

([f(z)]p)′f(z) =

(
p

p + 1
[f(z)]p+1

)′

= B(z) + ωϕ′(z)[ωϕ(z)]
1
p ≤ B(z) + ωϕ′(z)f(z)

Hence the FSP follows from Lemma 2.6.
(2): Let

f(z) =

{
ωϕ(z) +

[p + 1

p

∫ z

0

B(s)ds
] p

p+1

} 1
p

,
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then for all ω ≥ 0,
∫ σ

0
dz/f(z) = ∞ follows from (3.4). We further have that

f(z) ≥ [(1 + 1/p)
∫ z

0
B(s)ds]1/(p+1), and

([f(z)]p)′ = ωϕ′(z) +
B(z)

[(1 + 1/p)
∫ z

0
B(s)ds]1/(p+1)

≥ ωϕ′(z) +
B(z)

f(z)
.

This indicates, by Lemma 2.7, that the ISP is admitted.

To conclude this section, we consider fully diffusion-convection-absorption
equation of power-like nonlinearity:

∂t(u
m) − ∂x(|∂xu|p−1∂xu) − μ|∂xu|q−1∂xu + λuk = 0,(3.5)

where m, p, q, k > 0, and μ ∈ R, λ ≥ 0. To state the result more concisely we
denote q∗ = Hμ(q, m), k∗ = Hλ(k, m) with

Hε(h, m) :=

{
h, ε > 0,

m, ε = 0.

Again applying preceding method to this equation yields

Theorem 3.3. Consider two situations as follows:

(1) Let μ ≥ 0. If min{m, q∗, k∗} < p, then FSP occurs; otherwise, (i.e.,
min{m, q∗, k∗} ≥ p) we have ISP for the equation.

(2) Let μ < 0. If min{m, k∗} < min{p, q}, or 1 ≥ m = q < p, then FSP
happens; otherwise, ISP must appear.

Proof. Again we construct super- and sub-solutions of the form

v(x, t) = z(ωt − x + x0),

where z = z(ζ) satisfies, with some β ∈ (0, 1) to be determined,

z′ = azβ , z(ζ) = 0 for ζ ≤ 0.

Namely, ∫ z

0

ds

asβ
= ζ+.

Therefore, we calculate that

∂t(v
m) − ∂x(|∂xv|p−1∂xv) − μ|∂xv|q−1∂xv + λvk

= mωazm−1+β − ap+1pβzpβ−1+β + μaqzqβ + λzk.

In the case (1) μ ≥ 0, if min{m, q∗, k∗} < p, we may choose β ∈ (0, 1) close
to 1 so that

m ≤ pβ or q∗β ≤ pβ − 1 + β or k∗ ≤ pβ − 1 + β,

and hence, with some ω ≥ 0, a > 0,

mωazm−1+β − ap+1pβzpβ−1+β + μaqzqβ + λzk ≥ 0(3.7)

holds for z > 0 sufficiently small. This indicates that v(x, t) is a super-solution
with compact support supp v(·, t) for all t ≥ 0 small enough, and so FSP
property follows for all solutions.
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If min{m, q∗, k∗} ≥ p, then we have

m > pβ, q∗β > pβ − 1 + β, and k∗ > pβ − 1 + β.

Thus for any ω > 0 there exists σ > 0 so that

mωazm−1+β − ap+1pβzpβ−1+β + μaqzqβ + λzk ≤ 0, 0 < z < σ.(3.8)

This means that v(x, t) = z(ωt − x + x0) is a sub-solution. Since ω > 0 is
arbitrary, we may derive ISP property as in the proof of Lemma 2.7.

In the case (2) μ < 0. Let min{m, k∗} < min{p, q}. As in the case (1) we
may choose β ∈ (0, 1) close to 1 so that either

m ≤ pβ, m − 1 + β ≤ qβ,

or

k∗ ≤ pβ − 1 + β, k∗ ≤ qβ,

and then (3.7) holds for some ω ≥ 0 and a > 0, and consequently FSP follows.
The case min{m, k∗} ≥ min{p, q} can be divided into the following situa-

tions:

(a) min{m, k∗} > min{p, q},
(b) min{m, k∗} = p ≤ q,
(c) m > k∗ = min{p, q}, and
(d) k∗ ≥ m = q < p.

In the first three cases we have that either

m − 1 + β > pβ − 1 + β, k∗ ≥ pβ − 1 + β,

or

m − 1 + β > qβ, k∗ ≥ qβ,(3.9)

and hence (3.8) is valid for any ω > 0 with some σ > 0.
The last situation (d) may be further divided into:
(d-1) k∗ ≥ m = q < p and m = q > 1 — (3.9), and then (3.8), holds;
(d-2) k∗ ≥ m = q < p and m = q ≤ 1 — we have

m − 1 + β ≤ qβ, m − 1 + β ≤ pβ − 1 + β,

and consequently (3.7), as well as FSP, is valid.

4. Multi-Dimensional Equation

Now we consider n-dimensional equation (1.2), i.e.,

∂tϕ(u) − Δp+1u = 0 in R
n × (0,∞),(4.1)

where Δp+1u = div (|∇u|p−1∇u). In a way parallel to one-dimensional case,
super- and sub-solutions are defined similarly, and corresponding comparison
principle keeps valid.
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Theorem 4.1. Let u(x, t) be a nontrivial solution of (4.1) in R
n × (0, T ). If

ϕ(z) satisfies

lim
z→0+

ϕ′(z)

| log z|pzp−1
= 0,

then there exists τ ∈ (0, T ] so that suppu(·, t) = R
n for 0 < t < τ , i.e.,

u(x, t) > 0 for all x ∈ R
n.

Remark 4.2. This result shows that support of the solution, initially compact,
will expand instantaneously out the whole space, namely, the perturbation
propagates at infinite speed.

Proof. Without loss of generality, assume that supp u(·, t) ⊃⊃ BR, the ball of
radius R > 0 and centered at origin. By the continuity there exists τ ∈ (0, T ]
so that

η = inf
0<t<τ,|x|≤R

u(x, t) > 0

since u(x, 0) > 0 in BR. Now it suffices to show u > 0 in Q := (Rn\BR)×(0, τ).
Fix an arbitrary point (x0, t0) ∈ Q, set ω = (2|x0| − R)/t0, and define

v(x, t) = z(ωt − r + R), where r = |x|, z(ζ) solves the following equation:∫ z(ζ)

0

ds

fε(s)
= ζ+ for ζ ≤ ζ0 :=

∫ η

0

ds

fε(s)
,

where fε(z) = [(z| log z|)p−1 + εz(p−1)β]1/(p−1), with β ∈ (0, 1) (say β = 1/2),
and ε > 0 will be determined later. This gives

z′ = fε(z), 0 ≤ z(ζ) ≤ η for ζ ≤ ζ0.

By further calculation we obtain γ, σ > 0, not depending on ε, such that

z′′ = f ′
ε(z)z′ ≥ γ| log z|z′

holds for 0 < z < σ. Thus we have

∂tϕ(v)−Δp+1v = ωϕ′(z)z′ + ∂r

[
(z′)p

]
+

n − 1

r
(z′)p

= ωϕ′(z)z′ − p(z′)p−1z′′ +
n − 1

r
(z′)p−1z′

≤
{

ωϕ′(z) − (pγ| log z| − n − 1

R
)[(z| log z|)p−1 + εz(p−1)β ]

}
z′

≤
{

ωϕ′(z) − pγ

2
| log z|pzp−1

}
z′ ≤ 0

for z ∈ (0, σ) with σ small enough. Now we may choose ε > 0 so small that

ζ0 =

∫ η

0

ds

fε(s)
≥

∫ η0

0

ds

fε(s)
≥ ωτ, η0 = min{η, σ},

which implies that v(x, t) ≤ z(ωτ) ≤ η0 when (x, t) ∈ Q. So v(x, t) is a
sub-solution of (4.1) in Q. In addition,

v(x, 0) = 0 ≤ u(x, 0) for |x| ≥ R,
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v(x, t) = z(ωt) ≤ η ≤ u(x, t) for |x| = R, 0 ≤ t ≤ τ.

Therefore, comparison principle yields v ≤ u in Q = (Rn \ BR) × (0, τ). In
particular,

u(x0, t0) ≥ v(x0, t0) = z(ωt0 + R − |x0|) > 0,

since ωt0 +R−|x0| = |x0| > 0. From the arbitrariness of (x0, t0) in Q it follows
that

u(x, t) > 0 for all |x| ≥ R, t ∈ (0, τ),

which completes the proof.

Particularly, we may apply above conclusion to the equation

∂t(u
m) − Δp+1u = 0 in R

n × (0, T ).(4.2)

Corollary 4.3. Equation (4.2) admits infinite speed propagation if m ≥ p.

The following result implies that (4.2) admits FSP property if m < p.

Theorem 4.4. Let u(x, t) be a bounded solution of (4.1) in R
n × (0, T ), sat-

isfying

supp u(·, 0) ⊂ Ω0 = {x = (x1, x
′) ∈ R

n| x1 < 0}.
If

∫ σ

0
dz

ϕ1/p(z)
< ∞, then there exist τ ∈ (0, T ] and r(t) > 0 so that

suppu(·, t) ⊂ Ωr(t) = {x = (x1, x
′) ∈ R

n| x1 < r(t)}, 0 < t < τ.

In other words,

u(x, t) = 0 for x1 ≥ r(t), 0 < t < τ.

Proof. In order to show FSP property of u we construct a super-solution as
follows.

Let ω > 0, z(ζ) solves the following equation:∫ z(ζ)

0

ds

[ωϕ(s)]1/p
= ζ+ < +∞, and ζ0 :=

∫ M

0

ds

[ωϕ(s)]1/p
.

where M = maxu(x). Then z′(ζ) = [ωϕ(z)]1/p, and z(ζ) ≥ 0.
Now consider function v(x, t) = z(ωt−x1 +ζ0) where x = (x1, x

′), x′ ∈ R
n−1

in PT = R
n
+ × (0, T ), R

n
+ = {x = (x1, x

′)|x1 ≥ 0, x′ ∈ R
n−1}. Then we have

v(x, t) ≥ 0, and

∂tϕ(v) − Δp+1v =ϕ′(z)ωz′ + ∂x1(z
′)p

=ωϕ′(z)z′ − ωϕ′(z)z′ = 0.

Thus v(x, t) is a super-solution of (4.1) in PT . Besides, we see that

u(x, 0) = 0 ≤ v(x, 0) = z(−x1 + x0) for x1 ≥ 0;

and by the boundedness of solution so that

u(0, x′, t) ≤ M = z(ζ0) ≤ z(ωt + ζ0) = v(0, x′, t) for 0 ≤ t ≤ T.
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According to the comparison principle we obtain that u ≤ v on P T = R
n
+ ×

[0, T ]. Particularly,

u(x, t) = 0 for x1 ≥ ωt + ζ0, 0 ≤ t ≤ τ,

i.e., FSP is admitted.
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