-
RootNode
-
Co-operative College, Mandalay
-
Cooperative College, Phaunggyi
-
Co-operative University, Sagaing
-
Co-operative University, Thanlyin
-
Dagon University
-
Kyaukse University
-
Laquarware Technological college
-
Mandalay Technological University
-
Mandalay University of Distance Education
-
Mandalay University of Foreign Languages
-
Maubin University
-
Mawlamyine University
-
Meiktila University
-
Mohnyin University
-
Myanmar Institute of Information Technology
-
Myanmar Maritime University
-
National Management Degree College
-
Naypyitaw State Academy
-
Pathein University
-
Sagaing University
-
Sagaing University of Education
-
Taunggyi University
-
Technological University, Hmawbi
-
Technological University (Kyaukse)
-
Technological University Mandalay
-
University of Computer Studies, Mandalay
-
University of Computer Studies Maubin
-
University of Computer Studies, Meikhtila
-
University of Computer Studies Pathein
-
University of Computer Studies, Taungoo
-
University of Computer Studies, Yangon
-
University of Dental Medicine Mandalay
-
University of Dental Medicine, Yangon
-
University of Information Technology
-
University of Mandalay
-
University of Medicine 1
-
University of Medicine 2
-
University of Medicine Mandalay
-
University of Myitkyina
-
University of Public Health, Yangon
-
University of Veterinary Science
-
University of Yangon
-
West Yangon University
-
Yadanabon University
-
Yangon Technological University
-
Yangon University of Distance Education
-
Yangon University of Economics
-
Yangon University of Education
-
Yangon University of Foreign Languages
-
Yezin Agricultural University
-
New Index
-
Item
{"_buckets": {"deposit": "a0202f86-215c-409c-9cd9-a571e69c65f8"}, "_deposit": {"created_by": 71, "id": "6942", "owner": "71", "owners": [71], "owners_ext": {"displayname": "Kay_Thwe", "username": "kay_thwe"}, "pid": {"revision_id": 0, "type": "depid", "value": "6942"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/00006942", "sets": ["user-miit"]}, "communities": ["miit"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Application of Hungarian Method for Travelling Top Seven Tourist Destinations in Myanmar", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "In this paper, we introduce the Travelling Salesman Problem (TSP) and solve for the most efficient route\nof the problem by using the steps of the Hungarian method. Specifically, this paper discussed the properties of a\nTSP matrix, provided the steps for Hungarian method, and described a list of 7 cities and the distance between each\npairs of cities that apply these concepts of a Travelling Salesman problem. We do not consider any constraint on the\norder in which the localities are visited, nor do we take into the account possible traffic at differing times. We used\nto travel for top seven problems to show how the Hungarian method is used and it is an efficient way to solve the\nTravelling Salesman Problem. At the end, Hungarian Algorithm method is used to find minimum distance for\nshortest possible route that visits each city and return of the origin city."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Travelling Saleman Problem, Hungarian Method, matrix, Distance Value, Minimize route"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2020-12-19"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Content for No.2.pdf", "filesize": [{"value": "186 KB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_0", "mimetype": "application/pdf", "size": 186000.0, "url": {"url": "https://meral.edu.mm/record/6942/files/Content for No.2.pdf"}, "version_id": "542ae48d-65ab-4f6e-819a-be93e253abea"}, {"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2020-12-19"}], "displaytype": "preview", "download_preview_message": "", "file_order": 1, "filename": "Application of Hungarian Method for Travelling Top Seven Tourist Destinations in Myanmar.pdf", "filesize": [{"value": "495 KB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_0", "mimetype": "application/pdf", "size": 495000.0, "url": {"url": "https://meral.edu.mm/record/6942/files/Application of Hungarian Method for Travelling Top Seven Tourist Destinations in Myanmar.pdf"}, "version_id": "7bea3f73-675e-4e0f-bc7f-1594fb144d0d"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "No.2", "subitem_journal_title": "Journal of Research and Innovation Issue on Science, Engineering and Education TU(Thanlyin)", "subitem_pages": "134-138", "subitem_volume": "Vol.2"}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Sanda San"}, {"subitem_authors_fullname": "Thet Mon Win"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Journal article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2019-12-21"}, "item_title": "Application of Hungarian Method for Travelling Top Seven Tourist Destinations in Myanmar", "item_type_id": "21", "owner": "71", "path": ["1582963674932", "1597397085335"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000006942", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2020-12-19"}, "publish_date": "2020-12-19", "publish_status": "0", "recid": "6942", "relation": {}, "relation_version_is_last": true, "title": ["Application of Hungarian Method for Travelling Top Seven Tourist Destinations in Myanmar"], "weko_shared_id": -1}
Application of Hungarian Method for Travelling Top Seven Tourist Destinations in Myanmar
http://hdl.handle.net/20.500.12678/0000006942
http://hdl.handle.net/20.500.12678/000000694271bd7a55-fcf6-45df-94c0-8a5321ed6e8c
a0202f86-215c-409c-9cd9-a571e69c65f8
Name / File | License | Actions |
---|---|---|
![]() |
||
![]() |
Publication type | ||||||
---|---|---|---|---|---|---|
Journal article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Application of Hungarian Method for Travelling Top Seven Tourist Destinations in Myanmar | |||||
Language | en | |||||
Publication date | 2019-12-21 | |||||
Authors | ||||||
Sanda San | ||||||
Thet Mon Win | ||||||
Description | ||||||
In this paper, we introduce the Travelling Salesman Problem (TSP) and solve for the most efficient route of the problem by using the steps of the Hungarian method. Specifically, this paper discussed the properties of a TSP matrix, provided the steps for Hungarian method, and described a list of 7 cities and the distance between each pairs of cities that apply these concepts of a Travelling Salesman problem. We do not consider any constraint on the order in which the localities are visited, nor do we take into the account possible traffic at differing times. We used to travel for top seven problems to show how the Hungarian method is used and it is an efficient way to solve the Travelling Salesman Problem. At the end, Hungarian Algorithm method is used to find minimum distance for shortest possible route that visits each city and return of the origin city. |
||||||
Keywords | ||||||
Travelling Saleman Problem, Hungarian Method, matrix, Distance Value, Minimize route | ||||||
Journal articles | ||||||
No.2 | ||||||
Journal of Research and Innovation Issue on Science, Engineering and Education TU(Thanlyin) | ||||||
134-138 | ||||||
Vol.2 |