MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "b9d886ec-8a98-443c-8a36-cf09374ec7f5"}, "_deposit": {"created_by": 45, "id": "6186", "owner": "45", "owners": [45], "owners_ext": {"displayname": "", "username": ""}, "pid": {"revision_id": 0, "type": "recid", "value": "6186"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/6186", "sets": ["user-uit"]}, "communities": ["uit"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "ASEAN Child Face Recognition System with FaceNet", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Current researches show that deep\nlearning is the state-of-art techniques in\nmachine learning which outperform the\nhuman level performance. It is also the\npopular technique which gives high accuracy\nin computer vision. Face recognition is one of\nthe ongoing researches in biometric\nauthentication and identification system. In\nthis paper, we develop ASEAN child face\nrecognition system using FaceNet. We use\nFaceNet as feature extractions, dlib as\npreprocessing and classifier as K-Nearest\nNeighbors (KNN). FaceNet produces 128\nembeddings per face as feature vectors and\ncalculate Euclidean distance between faces in\norder to measure face similarity. The\nproposed system achieves state-of-art face\nrecognition performance on ASEAN child\nface dataset with high accuracy."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Face Recognition KNN"}, {"interim": "FaceNet"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2020-11-17"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "ASEAN Child Face Recognition System with FaceNet.pdf", "filesize": [{"value": "2.2 Mb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_0", "mimetype": "application/pdf", "size": 2200000.0, "url": {"url": "https://meral.edu.mm/record/6186/files/ASEAN Child Face Recognition System with FaceNet.pdf"}, "version_id": "f044c3a1-eb45-4ef4-98ee-787bfb407797"}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "MURC", "subitem_c_date": "24-25 June, 2019", "subitem_conference_title": "MYANMAR UNIVERSITIES\u0027 RESEARCH CONFERENCE 2019", "subitem_place": "Yangon, Myanmar"}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Shun Lei Myat Oo"}, {"subitem_authors_fullname": "Aung Nway Oo"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Conference paper"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2019-06-25"}, "item_title": "ASEAN Child Face Recognition System with FaceNet", "item_type_id": "21", "owner": "45", "path": ["1596102355557"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000006186", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2020-11-17"}, "publish_date": "2020-11-17", "publish_status": "0", "recid": "6186", "relation": {}, "relation_version_is_last": true, "title": ["ASEAN Child Face Recognition System with FaceNet"], "weko_shared_id": -1}
ASEAN Child Face Recognition System with FaceNet
http://hdl.handle.net/20.500.12678/0000006186
http://hdl.handle.net/20.500.12678/0000006186a0968bd8-922d-46e8-ac07-1d1683887116
b9d886ec-8a98-443c-8a36-cf09374ec7f5
Name / File | License | Actions |
---|---|---|
![]() |
Publication type | ||||||
---|---|---|---|---|---|---|
Conference paper | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | ASEAN Child Face Recognition System with FaceNet | |||||
Language | en | |||||
Publication date | 2019-06-25 | |||||
Authors | ||||||
Shun Lei Myat Oo | ||||||
Aung Nway Oo | ||||||
Description | ||||||
Current researches show that deep learning is the state-of-art techniques in machine learning which outperform the human level performance. It is also the popular technique which gives high accuracy in computer vision. Face recognition is one of the ongoing researches in biometric authentication and identification system. In this paper, we develop ASEAN child face recognition system using FaceNet. We use FaceNet as feature extractions, dlib as preprocessing and classifier as K-Nearest Neighbors (KNN). FaceNet produces 128 embeddings per face as feature vectors and calculate Euclidean distance between faces in order to measure face similarity. The proposed system achieves state-of-art face recognition performance on ASEAN child face dataset with high accuracy. |
||||||
Keywords | ||||||
Face Recognition KNN, FaceNet | ||||||
Conference papers | ||||||
MURC | ||||||
24-25 June, 2019 | ||||||
MYANMAR UNIVERSITIES' RESEARCH CONFERENCE 2019 | ||||||
Yangon, Myanmar |