MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "99ddd853-c2d4-4668-a975-19889843dd14"}, "_deposit": {"created_by": 45, "id": "5352", "owner": "45", "owners": [45], "owners_ext": {"displayname": "", "username": ""}, "pid": {"revision_id": 0, "type": "recid", "value": "5352"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/5352", "sets": ["user-uit"]}, "communities": ["uit"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Information Extraction from Social Media", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "With the proliferation of social media\nsites, such as Twitter, Facebook, and LinkedIn,\nsocial streams have proven to contain the most\nup-to-date information on current events.\nTherefore, it is crucial to extract activities or\nevents from the social streams, such as tweets\nand it become an ongoing research trend. Most\napproaches that aim at extracting event\ninformation from twitter typically use the context\nof messages. However, exploiting the location\ninformation of geo-referenced messages and the\nprofile data are also important because tweet\nmessages are short, fragmented and noisy, and\ntherefore not include complete information about\nthe events. For this, in this paper, a framework\nfor event-extraction and categorization from\nTwitter is proposed. To extract the localized\nrelated activities, several mining mechanisms\nand cleaning techniques is used for real-time\ntwitter corpus and various language processing\napproaches is applied for categorization the\nevents and then the system will display the\nvaluable information for the targeted domain."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Information Extraction"}, {"interim": "Social Media"}, {"interim": "Activity"}, {"interim": "Event"}, {"interim": "Twitter"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2020-09-14"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Information Extraction from Social Media.pdf", "filesize": [{"value": "194 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_0", "mimetype": "application/pdf", "size": 194000.0, "url": {"url": "https://meral.edu.mm/record/5352/files/Information Extraction from Social Media.pdf"}, "version_id": "62e8539c-4a4d-44a9-8ad2-008baf11445a"}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "ICCA", "subitem_c_date": "17 February, 2017", "subitem_conference_title": "International Conference on Computer Applications", "subitem_place": "Sedona Hotel, Yangon, Myanmar"}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "San San Nwe"}, {"subitem_authors_fullname": "Khin Nwe Ni Tun"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Conference paper"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2017-02-17"}, "item_title": "Information Extraction from Social Media", "item_type_id": "21", "owner": "45", "path": ["1582963342780"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000005352", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2017-02-17"}, "publish_date": "2017-02-17", "publish_status": "0", "recid": "5352", "relation": {}, "relation_version_is_last": true, "title": ["Information Extraction from Social Media"], "weko_shared_id": -1}
Information Extraction from Social Media
http://hdl.handle.net/20.500.12678/0000005352
http://hdl.handle.net/20.500.12678/0000005352f17b528b-2d2d-44a0-ad4c-ef1c11408430
99ddd853-c2d4-4668-a975-19889843dd14
Name / File | License | Actions |
---|---|---|
![]() |
Publication type | ||||||
---|---|---|---|---|---|---|
Conference paper | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Information Extraction from Social Media | |||||
Language | en | |||||
Publication date | 2017-02-17 | |||||
Authors | ||||||
San San Nwe | ||||||
Khin Nwe Ni Tun | ||||||
Description | ||||||
With the proliferation of social media sites, such as Twitter, Facebook, and LinkedIn, social streams have proven to contain the most up-to-date information on current events. Therefore, it is crucial to extract activities or events from the social streams, such as tweets and it become an ongoing research trend. Most approaches that aim at extracting event information from twitter typically use the context of messages. However, exploiting the location information of geo-referenced messages and the profile data are also important because tweet messages are short, fragmented and noisy, and therefore not include complete information about the events. For this, in this paper, a framework for event-extraction and categorization from Twitter is proposed. To extract the localized related activities, several mining mechanisms and cleaning techniques is used for real-time twitter corpus and various language processing approaches is applied for categorization the events and then the system will display the valuable information for the targeted domain. |
||||||
Keywords | ||||||
Information Extraction, Social Media, Activity, Event, Twitter | ||||||
Conference papers | ||||||
ICCA | ||||||
17 February, 2017 | ||||||
International Conference on Computer Applications | ||||||
Sedona Hotel, Yangon, Myanmar |