Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking


Index Link

Index Tree

  • RootNode

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "d08a3498-c07b-4a91-a865-9720f86c05db"}, "_deposit": {"id": "4899", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4899"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4899", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Proposed ApplicableFramework for Extracting Rootkits Features and Clustering through Dynamic Analysis for Incident Handling Systems", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Today’s threats have become complex multi-modulesystems using sophisticated techniques to target andattack vulnerable systems. The use of rootkits androotkit technologies in malware and cybercrime isincreasing. To remain undetected, malware creatorsincorporate rootkit components to maximize theirstealth capabilities. The main reason to develop thisresearch is the longer the malware can remainundetected on a compromised machine, the more thecybercriminal can profit. Therefore, the proposedsystem will focus on analyzing the kernel and user levelrootkits based on Window operating system withCuckoo sandbox. This system performs automated andmanual analysis for ensuring the important of theircharacteristics. The objectives are to identify therootkits based on their natures and complexity, and topropose feature extraction algorithm for improving thedetection model.Effective MalwareFeature ExtractionAlgorithm(EMFEA) is proposed in this framework fordetecting the future malware in Incident HandlingSystems. Moreover, the proposed system categorizesthe rootkits based on their relevant and prominentfeatures by using Hierarchical Clustering algorithm inWEKA."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Rootkit"}, {"interim": "feature extraction"}, {"interim": "Hierarchical Clustering"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-12"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "proceeding_total-pages-342-350.pdf", "filesize": [{"value": "3373 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 3373000.0, "url": {"url": "https://meral.edu.mm/record/4899/files/proceeding_total-pages-342-350.pdf"}, "version_id": "3b9a7d8c-f93e-43be-9820-eddb0857c125"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fifteenth International Conference on Computer Applications(ICCA 2017)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "San, Cho Cho"}, {"subitem_authors_fullname": "Thwin, Mie Mie Su"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2017-02-16"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/802"}, "item_title": "Proposed ApplicableFramework for Extracting Rootkits Features and Clustering through Dynamic Analysis for Incident Handling Systems", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004899", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-12"}, "publish_date": "2019-07-12", "publish_status": "0", "recid": "4899", "relation": {}, "relation_version_is_last": true, "title": ["Proposed ApplicableFramework for Extracting Rootkits Features and Clustering through Dynamic Analysis for Incident Handling Systems"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Proposed ApplicableFramework for Extracting Rootkits Features and Clustering through Dynamic Analysis for Incident Handling Systems

http://hdl.handle.net/20.500.12678/0000004899
http://hdl.handle.net/20.500.12678/0000004899
be3181b3-408d-415b-a4a2-65beaa076b32
d08a3498-c07b-4a91-a865-9720f86c05db
None
Preview
Name / File License Actions
proceeding_total-pages-342-350.pdf proceeding_total-pages-342-350.pdf (3373 Kb)
Publication type
Article
Upload type
Publication
Title
Title Proposed ApplicableFramework for Extracting Rootkits Features and Clustering through Dynamic Analysis for Incident Handling Systems
Language en
Publication date 2017-02-16
Authors
San, Cho Cho
Thwin, Mie Mie Su
Description
Today’s threats have become complex multi-modulesystems using sophisticated techniques to target andattack vulnerable systems. The use of rootkits androotkit technologies in malware and cybercrime isincreasing. To remain undetected, malware creatorsincorporate rootkit components to maximize theirstealth capabilities. The main reason to develop thisresearch is the longer the malware can remainundetected on a compromised machine, the more thecybercriminal can profit. Therefore, the proposedsystem will focus on analyzing the kernel and user levelrootkits based on Window operating system withCuckoo sandbox. This system performs automated andmanual analysis for ensuring the important of theircharacteristics. The objectives are to identify therootkits based on their natures and complexity, and topropose feature extraction algorithm for improving thedetection model.Effective MalwareFeature ExtractionAlgorithm(EMFEA) is proposed in this framework fordetecting the future malware in Incident HandlingSystems. Moreover, the proposed system categorizesthe rootkits based on their relevant and prominentfeatures by using Hierarchical Clustering algorithm inWEKA.
Keywords
Rootkit, feature extraction, Hierarchical Clustering
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/802
Journal articles
Fifteenth International Conference on Computer Applications(ICCA 2017)
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 15:28:32.867488
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL