

342

Proposed ApplicableFramework for Extracting Rootkits Features and

Clustering through Dynamic Analysis for Incident Handling Systems

Cho Cho San, Mie Mie Su Thwin

University of Computer Studies, Yangon.

chochosan@ucsy.edu.mm, miemiesuthwinster@gmail.com

Abstract

 Today’s threats have become complex multi-module

systems using sophisticated techniques to target and

attack vulnerable systems. The use of rootkits and

rootkit technologies in malware and cybercrime is

increasing. To remain undetected, malware creators

incorporate rootkit components to maximize their

stealth capabilities. The main reason to develop this

research is the longer the malware can remain

undetected on a compromised machine, the more the

cybercriminal can profit. Therefore, the proposed

system will focus on analyzing the kernel and user level

rootkits based on Window operating system with

Cuckoo sandbox. This system performs automated and

manual analysis for ensuring the important of their

characteristics. The objectives are to identify the

rootkits based on their natures and complexity, and to

propose feature extraction algorithm for improving the

detection model.Effective MalwareFeature Extraction

Algorithm(EMFEA) is proposed in this framework for

detecting the future malware in Incident Handling

Systems. Moreover, the proposed system categorizes

the rootkits based on their relevant and prominent

features by using Hierarchical Clustering algorithm in

WEKA.

Keywords: Rootkit, feature extraction, Hierarchical

Clustering

1. Introduction

The term rootkit originates from the composition of

the individual terms root, referring to the highest

privilege of access that can be obtained in a traditional

Unix-based operating system, and kit, referring to a set

of programs that are designed to exploit a target

system, gain root access and then maintain it without

tripping any alarms [1].

Rootkits differ in a few ways from other malware

such as viruses or worms. Rootkit is not a self-

propagating code. It requires typically three snippets of

code known as dropper, loader and rootkit. Rootkit

technologies have been used in malware to conceal the

malicious behavior. Deploying rootkit technology

buries the malware deep within the computer making it

much more difficult to detect and complex to remove

[2].

 There are two main reasons to conduct research in

the area of Window rootkits:

1. Modern rootkits are highly obfuscated to confuse

forensics and frustrate reverse engineering,

incorporate covert channel, encrypted files, and a

modular design that allows different types of

malware from different designers to work together

by exporting malicious APIs and syscalls [3].

2. Most research avoid the major challenge of

dealing with encrypted or packed malicious

samples.

 Therefore, analyzing the nature of rootkits is very

important because they are very effective tools for

hiding malicious software, and attackers will continue

to use them as long as there is profit to be made.

Moreover, the proposed system expects to identify the

rootkits depend on their obfuscation techniques.

The rest of the paper is organized as follows:

 Section 2summarizes the related work,

 Section 3 discusses technical background of

Rootkits,

 Section 4 describes our proposed system,

 Section 5 provides the contribution,

 Section 6 highlights system experiment setupand

 Section 7shows the experimental results

respectively,

 Finally, section 8 we provide a conclusion and the

outline of our future research plans.

mailto:chochosan@ucsy.edu.mm
mailto:miemiesuthwinster@gmail.com

343

2. Related Works

Rootkits primarily can be found into three main

types, namely patching (replacement of code sections),

hooking (altering execution paths), and data structure

manipulation (altering data structures) [4]. Malware

analysis can be classified into two ways such as static

and dynamic analysis. The static feature uniquely

identifies the signature of malware or malware families.

Static analysis is vulnerable to code obfuscation

techniques. Dynamic analysis is test the program real

time by actual execution in controlled environment. In

dynamic analysis behavior of malicious software is

monitored in emulated environment and traces are

obtained from the reports generated by sandbox. It can

deal with code evasion techniques [14].

In Ramani et.al [5], “Rootkit (malicious code)

prediction through data mining methods and

techniques”,2013, McAfee’s Rootkit Detective was

used to detect the hooks created by rootkits and to

extract the data from log files Parser-o-matic was used.

1377 hooks were detected after analyzing the log files

of 87 samples. Correlation Bayes algorithm was found

to attain the maximum level of prediction accuracy than

others. The rootkit records were categorized according

to their attribute values as Inline or other. However,

they do not describe exactly the others are Import

Address Table (IAT) Hooking or System Service

Descriptor Table (SSDT) hooking or Interrupt

Descriptor Table (IDT) or Direct Kernel Object

Manipulation (DKOM) Hooking.

 In Lobo et.al [6], “RBACS: Rootkit Behavioral

Analysis and Classification System,” 2010, they

analyzed the inline function hooking techniques by

using McAfee's rootkit detector and expectation-

maximization (EM) algorithm for clustering the dataset.

Parser-o-matic was used to extract the features from log

files. However, this paper strictly focused on the rootkit

that use inline function hooking techniques only. But,

in [7], “Identifying Rootkit Infections Using Data

Mining,” 2010, they extended their system by

conducting IATs and SSDTs hooking techniques. The

CLOPE (Clustering with sLOPE) algorithm was used

for analyzing their dataset and ID algorithm was used

for identifying the system infected by using Wakaito

Environment for Knowledge Analysis (WEKA). But

they avoided the major challenge of dealing with

encrypted or packed samples. And then in [8], “A new

procedure to help system/network administrators

identify multiple rootkit infections”, 2010,they aimed

to detect multiple rootkit infections by trying many

different combinations of rootkits through dynamic

analysis for inline function hooking techniques only.

In [9],“An Effective Method for Protecting Native

API Hook Attacks in User-mode”,2015, they tried to

monitor and detect native API hooking in user space by

intercepting native API calls in user mode and looking

the traces of IAT entry modification and inline

hooking. To test the precision rate of their approach,

they have run the malware samples with existing tools

R3 Hook scanner, BlackLight, IceSword, and VICE.

Ten legitimate API hooks have been taken to determine

False Positive. However, their system could not be

detected as malicious if any hook which attempts to

alter some bytes randomly instead of the first five bytes

of a DLL functions. Moreover, this method could not

detect malicious code attacks that directly target kernel-

mode data structures, specifically System Service

Dispatch Table (SSDT).

In “Comparative Analysis of Feature Extraction

Methods of Malware Detection”,2015,they provide a

comparative assessment of features and an overview of

malware detection techniques based on static, dynamic

and hybrid analysis of executables. The authors

proposed general framework of malware detection

systemand pinpoints strengths and weaknesses of each

method[14].

In “Analysis of Malware Behavior: Type

Classification using Machine Learning”, 2015, the

authors developed a distributed malware testing

environment by extending Cuckoo Sandbox and

achieved a high classificationrate with weighted

average AUC value of 0.98 using Random Forests

classifier [15].

In [17], their objectives are to propose a simple

static analysis technique for kernel level rootkit

detectionwith the aim of detecting malicious driver and

to helpin extracting rootkit driver samples from a

largecorpus. They proposed a set of features to

distinguishbetween malicious and legitimate drivers

based on astudy of modern kernel-level rootkit

behaviors.Furthermore, they evaluated the proposed

features bygathering 2200 kernel level rootkit drivers

and 2220legitimate drivers. Employing a C5classifier,

this system obtained accuracy of 98.15% inclassifying

the malicious and legitimate drivers.

In our proposed system, we will categorize the

rootkit samples based on their relevant families.

Because some rootkits could use not only the

combination of both user level and kernel level hooking

344

techniques but also more than one kernel level hooking

techniques to evade the detection.

3. Technical Background of Rootkits

Normally, each OS consists of a user-mode, called

ring 3 and a kernel-mode, called ring 0. The

classification of user mode and kernel mode rootkits

are as shown in Figure 1 [10].

3.1. User level Rootkits

There are two types of user level rootkit hooking

techniques. (a) Inline function hooking technique uses

Application Programming Interfaces (APIs) imported

from user mode DLLs, while kernel mode rootkits

inline hook the native APIs functions that reside in the

kernel space. It just overwrites the first five bytes of the

code in the API function with trampoline code. (b)

Import Address Table (IAT) Hooking is usually

achieved via DLL injection. From there it can rewrite

the IAT entries, pointing them to handlers within the

DLL.

3.2. Kernel level Rootkits

SSDThooking is very powerful because instead of

hooking a single program like an IAT hook does, this

technique installs a system wide hook that affects every

process [16].Haxdoor is an example of SSDT hooking

rootkits.IDT hooking rootkit modifies the IDT in the

memory and then gains the control of the complete

system. A stealthier version of idt-hook rootkit could

keep the original IDT unchanged by copying it to a new

location and altering it. Next attacker could change the

IDTR register to point to a new location. Alipop

rootkits hook the Global Descriptor Table (GDT). The

layered drivers use the I/O Request Packet (IRP) for

communicating to each other. If a rootkit driver is

successfully inserted between the driver chains, it is

possible to steal the IRP, which has a lot of important

information such as USB data, keyboard data and so on

[11]. It is called the Layer Driver Hooking. Popular

examples of layered driver rootkits are Turla and

Uroburos. DKOM Hooking rootkits can manipulate

kernel structures and can hide processes and ports,

change privileges, and fool the Windows event viewer

without many problems. This type of rootkit hides

processes by manipulating the list of active processes

of the operating system, changing data inside the

EPROCESS structures [12]. FU is a popular example of

a rootkit that uses DKOM tricks. However, FU does not

include a remote communication channel. FU can hide

processes and device drivers. It can also elevate the

privilege and groups of any Windows process token

[13].

Figure 1:Classification of rootkit

4. Proposed Applicable Process Flow of the

System

Nowadays, cybercrimes are committed by using the

technology and electronic devices such as computers,

mobile phones, and USB devices. The most salient

artifact within cyber security is malicious software. The

use of rootkits and rootkit technologies in malware and

cybercrime is increasing. Moreover, malware creators

incorporate rootkit components to maximize their

stealth capabilities and to remain undetected in a

compromised machine. Deploying rootkit technology

buries the malware deep within the computer making it

much more difficult to detect and complex to remove.

The longer the malware can remain undetected on a

compromised machine, the more the cybercriminal can

profit. For the above reasons and problems, therefore,

features extraction from generated log files in rootkit

analysis is very important to reduce the cybercrimes for

detection malicious code. So, we proposed the rootkit

feature extraction algorithm to point out the dominant

features based on the generated log files. The process

flow diagram shows the step by step procedure of the

rootkits analysis.

345

Figure 2. Overall architecture of the dynamic

rootkit analysis

A. Samples Collection Phase

In the samples collection phase, we can get the

rootkit samples from the online websites such as

offensivecomputing.net, opensecuritytraining, and

contagiodump, etc.

B. Unpacking Phase

For unpacking phase, we use the UPX unpacker for

unpacking the samples because malware creators use

the packing techniques for obfuscating malware code in

some malware. The UPX unpacker plug-in works on

packed malware executables and can handle a file even

if it has been packed with UPX and modified manually

so that UPX cannot be used directly to unpack the file,

because internal structures have been modified, for

example the names of the sections have been changed

from UPX to XYZ, or the version number of the UPX

format has been changed from 1.20 to 3.21. This

technique often is used by malware authors to make

unpacking and reverse engineering harder

(www.heaventools.com/PE_Explorer_plug-ins.htm).

C. Injection Phase

In this phase, cuckoo sandbox will be used as

automated rootkits analysis system in our proposed

system. Cuckoo Sandbox is one of the open-source

projects that has gained popularity in the recent years.

It can available at the onlinefreely [19]. It is widely

used by academic and independent researchers as well

as small to large companies and enterprises. It can

analyze many different malicious files (executable,

document exploits, Java applets) as well as malicious

websites, trace API calls and general behavior of the

file, dump and analyze network traffic using Tcpdump,

even when encrypted and perform advanced memory

analysis of the infected virtualized system with

integrated support for Volatility.

The proposed system performs dynamic analysis in

the secure virtual environments with Window-7

Operating System by injecting the malicious samples

into guest OS from Ubuntu host via cuckoo agent.

Cuckoo 2.0 dev version has been used in our malware

analysis. Firstly, we must start the cuckoo with python

cuckoo.py command as shown in Figure 3. And then

submit the sample into the guest operating system with

the help of cuckoo agent that installed in the Window-7

guest OS.

Figure 3. Starting cuckoo sandbox

Figure 4. Injecting the malware into guest

operating system

In this phase, some malware escape from the

analysis because of obfuscation. So, at that time we will

perform this type of malware by analyzing manually

using some rootkit detectors such as McAfee and

GMER, otherwise we will perform automatically by

using cuckoo sandbox.

Surface analysis will also be performed before

dynamic analysis step in manual rootkit analysis. A

surface analysis gets information of malware before

execution such as file type, file name, file size, time

346

stamp, strings (meaningful word) and hash value.

Some surface analysis tools are String, Digest,

HexWorkshop, PEiD and RDG Packer Detector, etc.

Figure 5 shows the process flow of the dynamic rootkit

analysis manually.

Figure 5. Manual dynamic rootkit analysis

procedure

D. Analysis Reporting

This phase describes the reporting of the output

from analysis. It generates the analysis result with

HTML, JSON (Java Script Object Notation) and

Malware Attribute Enumeration and Characterization

(MAEC) formats as a report.

E. Feature Extraction and Selection

In the feature extraction and selection phase, the

malware feature extraction algorithm will be proposed

in this system. Feature extraction phase is one of the

essential part of the rootkit analysis processes because

the detection accuracy depends on the nature of

features or attributes of malicious codes.Principal

Component Analysis (PCA) is one of the famous

feature extraction method. PCA method can only

extract the linear structure information in the data set,

however, it cannot extract this nonlinear structure

information. Kernel principal component analysis

(KPCA) is an improved PCA, which extracts the

principal components by adopting a nonlinear kernel

method. Some researchers use n-gram feature

extraction algorithm. However,we proposed a feature

extraction algorithm for extracting the prominent

features of the rootkits without using the existing

feature extraction algorithms. And then the feature

selection phase is necessary in our proposed system due

to the nature of attributes overlapping.Some popular

feature selection algorithms are TF-IDF, Information

Gain, and Chi Squares. After extracting the important

information from all samples of normal guest virtual

environment, the dataset will be created using

spreadsheet for future rootkits detection to help the

system administrator. The proposed feature extraction

algorithm has been described as below:

Algorithm:Effective Malware Feature Extraction

Algorithm (EMFEA)

Input: R A collection of report files

Output: F Malware features

1: Attributes A1 = {a1, ……, ai};

2: Features A2= {a1i, ……..., aji};

3: Read a report file;

4: Process the feature extraction on the file;

5: Output the generated features;

6:For each A1 in report do

7: If the R has A1then

8: For each A2 in R do

9: Extract A2 from R;

10: Add the new signatures into

the feature sets;

11: F A2;

12: End for

13: End if

14: End for

347

F. Clustering

By taking a dynamic analysis approach, the proposed

system will create the dataset and then cluster the

resulted output by using unsupervised clustering

technique. Therefore, the generated dataset has been

performed with Hierarchical Clustering algorithm to

cluster the resulted our own dataset according to their

associate and relevant features by using WEKA [18].In

hierarchicalclustering clusters are created either by top-

down or bottom-up fashion by recursive partitioning.

Hierarchical clusteringisdivided into two types such as

hierarchical agglomerative methods, and hierarchical

divisive clustering. This paper shows the clustering

result with percentage based on agglomerative (i.e.

bottom up) hierarchical clustering method on WEKA.

5. Contribution

This system proposed an applicable dynamic

malware analysis framework for Cyber Crime

Investigation and Incident Handling Systems in

Myanmar. Moreover, Effective Malware Feature

Extraction Algorithm has also proposed in this paper

because feature extraction method affects the

performance of the systemin terms efficiency,

robustness, and accuracy. Therefore, feature extraction

phase is one of the essential parts of the malware

analysis in Cyber Crime Investigation. List of points

are described as follow:

• Perform Dynamic analysis on the rootkit

because polymorphic rootkit (or virus)

effectively evades signature based detection of

its code body.
• Propose a prominent rootkit features

extraction algorithm for improving the

accuracy.
• Build rootkit dataset to perform experiments

for supporting rootkit detection model.

• Identify significant behaviors from the

malware samples.

The purposes of analyzing the variations of rootkits are

 To prevent unauthorized access from the

remote attackers,

 To protect sensitive information and to reduce

financial lost because rootkits pose a very high

level of risk to information and information

systems.

 To generate the features of the various rootkits

using their data access patterns, and then the

dataset will be created for future rootkit

detection in Incident Handling Systems.

6. Experiment Setup

Although there are several behavior-based rootkits

monitoring system that have been conducted in both

Linux and Window operating system for user mode and

kernel mode, this system will mainly focus only on

window user-level and kernel-level rootkits.

Our proposed system uses the following

specifications for rootkit analysis. Ubuntu 14.04 LTS-

64bit has been used for Host Operating System and

Window7-32bit as a Guest Operating System for

analyzing the malware sample in Virtual Box. For

automated dynamic analysis, Cuckoo Sandbox is used

in this system. As for other rootkits detectors, GMER

and McAfee’s detector will be performed in our

proposed system. We will also use other monitoring

tools such as Regshot and Process Explorer for

detecting the registry, system processes and services.

7. Experimental Result

In our proposed system, we experiment the total 144

malicious samples with different families respectively.

After analyzing the malicious samples, we extract the

prominent features from the analysis’ report into CSV

format. And then we convert the CSV format into

ARFF for analyzing the data in WEKA with WEKA

tool. Figure 6 shows the conversion of CSV into ARFF

format by using the ArffViewerin WEKA tool.

Figure 6: Conversion extracted features in csv to

arff format using ArffViewer

Using a spreadsheet, we created a large table with

144 rows for 144 rootkit samples with the attributes

including API calls, services, processes, network,

import and export files, and registry and so on. In total,

the 144 rootkit samples hadcreated 2371 attributes. In

our proposed system, feature reduction method has not

yet been performed in each sample because malware

create and call the system services, processes and

function continuously and sequentially. The final step

in the process is clustering the dataset. The dataset,

thus, consisted of 2371 attributes and 144 instances.

348

We attempted to cluster the 144 rootkit samples using

expectation-maximization (EM) algorithm but the

results are not too pleased. Some clusters contain

rootkits from two or more different families and should

have been broken up into even smaller clusters.

Therefore, we applied the Hierarchical Clustering

algorithm on this dataset. The Hierarchical Clustering

algorithm was available for implementation in the

WEKA. One of the advantages of hierarchical

clustering is that can generate smaller clusters which

may be helpful for discovery.And Hierarchical

Clustering algorithm did provide some much better

results than the other clustering algorithms with this

dataset. The results of our experiment are described in

the following figures with 10 clusters. Figure 7

represents the list of samples with their 10-

clusterfamily and figure 8 shows the percentage of each

cluster such as F1 is 10% and F3 is 49% respectively.

Figure 7. Categorize the resulted dataset with

hierarchical clustering algorithm

Figure 8. Clustering rootkit family with percentage

We demonstrated the effectiveness of this resulted

clusters to validate these results because we needed to

confirm that each rootkit family had something in

common. Was this algorithm generated meaningful

families or clusters for this dataset. To provide this

question, we examined by labeling the rootkit samples

using numerous online antivirus file scanners that can

label suspicious files. VirusTotal’sOnline Virus and

Malware Scan has been used to verify the clustering

algorithm’s result. A list ofthese scanners is provided in

Table I with the antivirus labels of families

respectively.

Table I. Antivirus Labels with Cluster Family

Family Antivirus Labels

Antivirus

Name

No: of

Sample

F1 Win.Trojan.Rootkit-6471

Rootkit.Agent.AJFK

Downloader.Darkmegi

ClamAV

F-Secure

Symantec

14

F2 Win.Trojan.Stuxnet-16

Trojan.Stuxnet.1

ClamAV

DrWeb

9

F3 Rootkit.Duqu.A

Trojan.Win32.Duqu.a

BitDefender

Kaspersky

4

F3 Trojan.Virut.Win32.2137 Zillya 12

F3 Trojan;Win32/Alureon.DX

Rootkit.TDSS.BK

Microsoft

BitDefender

17

F3 Trojan.Zeroaccess!g31

Rootkit.0Access

Backdoor.Win32.ZAccess.

apvo

Symantec

Malwarebyte

Kaspersky

7

F3 Backdoor.Generic.348775

Backdoor.HackDefender

F-Secure,

BitDefender

Symantec

3

F3 Backdoor.HackDefender

Win.Trojan.Hacdef-16

Symantec

ClamAV

14

F3 Backdoor.Rustock.Gen.1

Trojan-

Clicker.Win32.Costrat.bk

BitDefender

Kaspersky

5

F3 Trojan-

Dropper.Win32.Smiscer.hf

TrojanDropper:Win32/Sire

fef.B

Kaspersky

Microsoft

9

F4 Rootkit.Agent.AJFK

Rootkit.Agent.AJFK

Ad-Aware

F-Secure

6

F5 Trojan.Win32.Generic.pak

!cobra

AVware 8

F6 Backdoor.Win32.Agent.uq

Trojan.Migbot

Kaspersky

DrWeb

4

F7 Trojan.NtRootKit.3056

Rootkit.Win32.Agent.uv

Win32:Trojan-gen

DrWeb

Kaspersky

Avast

6

F7 RootKit-NTIllusion

Trojan/Hacktool.NTIllusio

n.a

McAfee

TheHacker

5

F7 BackDoor.Ntrootkit.B

Win32:NTRootKit [Trj]

AVG

Avast

6

F8 Backdoor.Haxdoor.OG BitDefender 4

F9 Dropped:Trojan.Hider.C BitDefender 7

F10 Trojan.Rootkit.D BitDefender,

F-Secure

4

The 144 rootkit samples were clustered into ten

different families: the first14 samples have been

assigned as Darkmegibythe Symantec Antivirus

scanner were all groupedinto the same family F1. As a

family F2, Win.Trojan.Stuxnet-16 has been labeled by

ClamAV. For family F3, 71 rootkit samples have been

labeled as Backdoor.Win32 or Trojan.Win32 families.

And F4, F5 and F6 are labeled as Rootkit.Agent.AJFK,

0

20

40

60

80

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

L
is

t
o

f
S

am
p

le
s

Family

List of Samples per each family from the resulted

dataset

10 6

49

4 6 3
11

3 5 3 0

20

40

60

80

100

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

P
er

ce
n
ta

g
e

(%
)

Family

Percentage per each cluster

349

Trojan.Win32.Generic.pak!cobra, and Trojan.Migbot

respectively. In family F7, ithas been labeled as

RootKit-NTIllusion or Ntrootkit. The last three families

F8, F9, F10 have been labeled as

Backdoor.Haxdoor.OG, Dropped:Trojan.Hider.C and

Trojan.Rootkit.D. As described above, this paper

presented the Effective Malware Feature Extraction

Algorithm(EMFEA) and shown that the clustering

performance together with Antivirus labels.

8. Conclusion

Modern rootkits are highly obfuscated toconfuse

forensics and frustrate reverse engineering,incorporate

encrypted files, encrypted communications,and a

modular design that allows different types ofmalware

from different designers to work together byexporting

malicious APIs and syscalls.Rootkits often try to hide

resources such as files, processes, Registry entries,

andports in order to remain stealthy.Therefore, malware

such as Trojans that have the rootkit hiding

functionalities will also be considered in this

system.This system will also consider the case that a

rootkit disables the anti-virus software or turns off the

firewall or connect to the C&C server to inject

backdoor or malicious code.This system will also

consider the case related with remote command/control

by monitoring the network traffic in the future.With an

increasing amount of malware adopting rootkit

technologies to evade antivirus software, further

research into defenses against rootkit attacks is

essential. Being able to identify rootkit infections is an

essential step in handling the infections

appropriately.Moreover, the feature extraction is the

core part of the malicious samples analysis for high

accuracy in detection. Therefore,this system proposes a

feature extraction algorithm for identifying the malware

attributes. Beyond that, the proposed system performed

the clustering from the resulted dataset by using

Hierarchical Clustering algorithm in WEKA. However,

the clustering is based on the relevant and prominent

features. This research focused on a small number of

rootkits samples. As for future work, we plan to expand

our system by adding other types of rootkits and test on

a larger sample set based on their rootkit hooking

techniques.Moreover, we will perform the classification

of input as benign or malicious.So, the proposed system

may expect to detect for future rootkits infections by

using the resulted dataset from the relevant features of

144 rootkit samples and it is applicable to identify the

future malicious samples.

References

[1]. Ramaswamy, Ashwin. “Detecting kernel rootkits.”

(2008).

[2]. Padakanti, Srikanth. “Rootkits Detection Using Inline

Hooking.” PhD diss., Texas A&M University-Corpus

Christi, 2012.

[3]. “Rootkits-investigation-procedures”, SANS Institute,

[4]. DD. Nerenberg, “A study of rootkit stealth techniques

and associated detection methods”, AIR FORCE INST

OF TECH WRIGHT-PATTERSON AFB OH

GRADUATE SCHOOL OF ENGINEERING AND

MANAGEMENT; 2007 Mar.

[5]. RG Ramani, SS Kumar, SG Jacob, “Rootkit (malicious

code) prediction through data mining methods and

techniques”, In Computational Intelligence and

Computing Research (ICCIC), 2013 IEEE International

Conference on 2013 Dec 26 (pp. 1-5). IEEE.

[6]. D. Lobo, P. Watters, X.Wu, “RBACS: Rootkit

behavioral analysis and classification system”, In

Knowledge Discovery and Data Mining, 2010.

WKDD'10. Third International Conference on 2010 Jan

9 (pp. 75-80). IEEE.

[7]. D. Lobo, P. Watters, X. Wu, “Identifying rootkit

infections using data mining”, In2010 International

Conference on Information Science and Applications

2010 Apr 21 (pp. 1-7). IEEE.

[8]. D. Lobo, P. Watters, X. Wu, “A new procedure to help

system/network administrators identify multiple rootkit

infections”, In Communication Software and Networks,

2010. ICCSN'10. Second International Conference on

2010 Feb 26 (pp. 124-128). IEEE.

[9]. K. Muthumanickam, E. Ilavarasan, “An Effective

Method for Protecting Native API Hook Attacks in

User-mode”, Research Journal of Applied Sciences,

Engineering and Technology. 2015 Jan 5;9(1):33-9.

[10]. G. Hoglund, J. Butler, “Rootkits: subverting the

Windows kernel”, Addison-Wesley Professional; 2006.

[11]. S. Kim, J. Park, K. Lee, I. You, K. Yim, “A brief survey

on rootkit techniques in malicious codes”, Journal of

Internet Services and Information Security.

2012;3(4):134-47.

[12]. E. Florio, “When malware meets rootkits”, Virus

Bulletin. 2005 Dec;12.

[13]. J. Butler, S. Sparks, “Windows rootkits of 2005, part

one”, Updated: 02 Nov 2010.

[14]. S. Ranveer, S. Hiray, “Comparative Analysis of Feature

Extraction Methods of Malware Detection”,

International Journal of Computer Applications. 2015

Jan 1;120(5).

[15]. RS. Pirscoveanu, SS. Hansen, TM. Larsen, M.

Stevanovic, JM. Pedersen, A. Czech, “Analysis of

malware behavior: Type classification using machine

learning”, In Cyber Situational Awareness, Data

Analytics and Assessment (CyberSA), 2015

International Conference on 2015 Jun 8 (pp. 1-7). IEEE.

[16]. J. Butler, S. Sparks, “Windows rootkits of 2005, part

one”, Updated: 02 Nov 2010.

350

[17]. S. A. Musavi, and M. Kharrazi, "Back to Static Analysis

for Kernel-Level Rootkit Detection", IEEE, 2013.

[18]. http://www.cs.waikato.ac.nz/ml/weka/

[19]. https://github.com/cuckoosandbox/cuckoo

http://www.cs.waikato.ac.nz/ml/weka/

