Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking


Index Link

Index Tree

  • RootNode

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "ea3b1d2b-65b9-4417-8507-c793cf04bcf9"}, "_deposit": {"id": "4547", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4547"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4547", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Performance Analysis of a Scalable Naïve Bayes Classifier on MapReduce and Beyond MapReduce", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Many real world areas from different sourcesgenerate the big data with large volume of highvelocity, complex and variable data. Big databecomes a challenge when they are difficult toprocess and extract knowledge using traditionalanalysis tools. Therefore the scalable machinelearning algorithms are needed for processing suchbig data. Recently Hadoop MapReduce frameworkhas been adapted for parallel computing. MapReducemay not fit for most of the real world dataapplications. For large scale machine learning ondistributed system, Spark has finally become muchmore viable beyond MapReduce. Although both ofthese frameworks are Apache-hosted data analyticframework, their performance varies significantlybased on the use case under their implementation.This paper aims to analyze the performance ofscalable Naïve Bayes classifier (SNB) which isimplemented on MapReduce and Beyond MapReduceover different real world datasets. The comparisonresults show that SNB on Beyond MapReduceprovides minimal processing time than SNB onMapReduce for efficiently big data classification."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Bid Data"}, {"interim": "Beyond MapReduce"}, {"interim": "MapReduce"}, {"interim": "scalable Naive Bayes"}, {"interim": "Spark"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-03"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "58-64.pdf", "filesize": [{"value": "240 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 240000.0, "url": {"url": "https://meral.edu.mm/record/4547/files/58-64.pdf"}, "version_id": "3dcc6386-b84e-4709-97e2-2e8150ee2ddf"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Sixteenth International Conferences on Computer Applications(ICCA 2018)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Oo, Myat Cho Mon"}, {"subitem_authors_fullname": "Thein, Thandar"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2018-02-22"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/247"}, "item_title": "Performance Analysis of a Scalable Naïve Bayes Classifier on MapReduce and Beyond MapReduce", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004547", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-03"}, "publish_date": "2019-07-03", "publish_status": "0", "recid": "4547", "relation": {}, "relation_version_is_last": true, "title": ["Performance Analysis of a Scalable Naïve Bayes Classifier on MapReduce and Beyond MapReduce"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Performance Analysis of a Scalable Naïve Bayes Classifier on MapReduce and Beyond MapReduce

http://hdl.handle.net/20.500.12678/0000004547
http://hdl.handle.net/20.500.12678/0000004547
112f6b38-f0d5-4003-92fa-366966b9d884
ea3b1d2b-65b9-4417-8507-c793cf04bcf9
None
Preview
Name / File License Actions
58-64.pdf 58-64.pdf (240 Kb)
Publication type
Article
Upload type
Publication
Title
Title Performance Analysis of a Scalable Naïve Bayes Classifier on MapReduce and Beyond MapReduce
Language en
Publication date 2018-02-22
Authors
Oo, Myat Cho Mon
Thein, Thandar
Description
Many real world areas from different sourcesgenerate the big data with large volume of highvelocity, complex and variable data. Big databecomes a challenge when they are difficult toprocess and extract knowledge using traditionalanalysis tools. Therefore the scalable machinelearning algorithms are needed for processing suchbig data. Recently Hadoop MapReduce frameworkhas been adapted for parallel computing. MapReducemay not fit for most of the real world dataapplications. For large scale machine learning ondistributed system, Spark has finally become muchmore viable beyond MapReduce. Although both ofthese frameworks are Apache-hosted data analyticframework, their performance varies significantlybased on the use case under their implementation.This paper aims to analyze the performance ofscalable Naïve Bayes classifier (SNB) which isimplemented on MapReduce and Beyond MapReduceover different real world datasets. The comparisonresults show that SNB on Beyond MapReduceprovides minimal processing time than SNB onMapReduce for efficiently big data classification.
Keywords
Bid Data, Beyond MapReduce, MapReduce, scalable Naive Bayes, Spark
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/247
Journal articles
Sixteenth International Conferences on Computer Applications(ICCA 2018)
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 15:04:35.530049
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL