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Abstract 
 

Many real world areas from different sources 

generate the big data with large volume of high 

velocity, complex and variable data. Big data 

becomes a challenge when they are difficult to 

process and extract knowledge using traditional 

analysis tools. Therefore the scalable machine 

learning algorithms are needed for processing such 

big data. Recently Hadoop MapReduce framework 

has been adapted for parallel computing. MapReduce 

may not fit for most of the real world data 

applications. For large scale machine learning on 

distributed system, Spark has finally become much 

more viable beyond MapReduce. Although both of 

these frameworks are Apache-hosted data analytic 

framework, their performance varies significantly 

based on the use case under their implementation. 

This paper aims to analyze the performance of 

scalable Naïve Bayes classifier (SNB) which is 

implemented on MapReduce and Beyond MapReduce 

over different real world datasets. The comparison 

results show that SNB on Beyond MapReduce 

provides minimal processing time than SNB on 

MapReduce for efficiently big data classification. 
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1. Introduction 
 

The massive growth of big data is increasing 

overwhelmingly during the past decades. The IBM 

Big Data Flood Infographic shows that 2.5 quintillion 

bytes of data are created every day [1]. Big data 

doesn't only refer to massive data, but also a series of 

techniques which turn a flood of data into valuable 

information. Traditional data mining techniques are 

not well suited to process the full value of big data. 

Therefore, an efficient and distributed processing 

model is needed to process and analyze such data. 

For processing huge amount of data, Hadoop is 

becoming the core technology to solve the huge data 

problems for large organizations with cloud storage. 

A commonly used architecture for Hadoop consists 

of Hadoop Distributed File System (HDFS) for big 

data storage and MapReduce for distributed parallel 

computing. 

Machine learning is also ideal for exploiting 

the opportunities hidden insight in big data. Apache 

Mahout is an open source machine learning library 

built on top of Hadoop to provide distributed 

analytics capabilities.  Although it was originally 

developed with MapReduce based algorithm, 

MapReduce was inefficient for most of the scalable 

machine learning that Mahout pioneered because of 

its limitation.  Also, alternative frameworks such as 

Spark have finally become much more viable.  

Spark absorbs the advantages of Hadoop 

MapReduce, unlike MapReduce, the intermediate and 

output results of the Spark jobs can be stored in 

memory, which is called Memory Computing. 

Memory Computing improves the efficiency of data 

computing. So, Spark is better suited for iterative 

applications, such as Data Mining and Machine 

Learning [2]. Starting from the release 0.10.0, a new 

generation of mahout was born for building backend 

independent programming environment, also called 

the code name, “Samsara”. Mahout Samsara is 

backend-agnostic and uses a Scala-based 

programming environment to support writing parallel 

mathematical languages. 

In this paper, the performances of SNB on 

MapReduce and Beyond MapReduce are compared 

and analyzed for efficiently big data classification. 

The remainder of this paper is organized as follow. 

First, the related work of this paper is described in 

section 2. Then, some background information is 

presented in section 3. And then architecture of SNB 

on MapReduce and Beyond MapReduce is presented 

in section 4. After that the performance evaluation 

and result discussions are shown in section 5.  

Finally, the conclusion of this paper is summarized   

in section 6. 
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2. Related Work 
 

There are many types of existing big data 

processing model for large scale data processing. 

Most of them are open source big data technologies 

and different performance on different data natures. 

To analyze the big data and exact useful information, 

choosing the efficient model from performance 

analysis is important. The authors [3] analyzed the 

performance of K-mean algorithm on MapReduce 

and Spark. They compared the Map and Reduce 

phases of K-mean on these frameworks. They 

showed that Spark has faster processing time than 

MapReduce for clustering data.  

To identify and explain the impact of different 

architectural choices, the authors [4] proposed a 

methodology by comparing the performance of Spark 

and Flink for big data analytics. Their key finding 

was that there none of the two framework 

outperforms the other for all data types, sizes and job 

patterns. 

With the rapid growing amount of data, the 

need for scalable model to store and process these 

data is increasing. The authors [5] performed the 

comparison on scalability for batch big data 

processing on Spark and Flink. They used Spark 

MLlib and Flink for their comparative study. Their 

experimental results show that Spark has better 

performance and overall lower runtime than Flink. 

This paper intends to compare the performance 

of SNB on MapReduce and Beyond MapReduce for 

efficiently big data classification. By using SNB on 

Beyond MapReduce, it performs efficiently 

processing on big data in distributed environment and 

provides good performance results than SNB on 

MapReduce.  

 

3. Preliminaries 
 

This section provides the preliminaries of the 

paper. First, section 3.1 introduces Apache Hadoop 

framework. Section 3.2 and 3.3 present MapReduce 

and Apache Spark, highlighting their architectural 

differences. Then section 3.4 describes Apache 

Mahout and Mahout Samsara. 

 

3.1. Apache Hadoop Framework 
 

 Apache Hadoop [6] is an open-source 

software framework for storing and processing large 

data in a distributed manner. It supports data 

intensive distributed applications on large clusters 

built of commodity hardware. This framework is 

designed to be scalable, which allows the user to add 

more nodes as the application requires. Hadoop 

consists of the Hadoop Distributed File System 

(HDFS) for big data storage and MapReduce 

framework for distributed processing. Hadoop cluster 

consists of a single master node and many worker 

nodes. HDFS is based on master/slave architecture. 

The development of Hadoop-based data mining 

techniques has been widely spread, because of its 

fault-tolerant mechanism and its ease of use.  

 

3.2. MapReduce Framework 

 
 The MapReduce framework [13] is the core 

of Apache Hadoop. This programming paradigm 

provides for massive scalability across hundreds or 

thousands of servers in a Hadoop cluster. It consists 

of two main phases: map and reduce. In the map 

phase, it takes a set of data and converts it into 

another set of data, where individual elements are 

broken down into tuples as key-value (< k, v >) pairs. 

In the reduce phase, the reduce job takes the output 

from a map as input and combines those data tuples 

into a smaller set of tuples. As the sequence of the 

name MapReduce implies, the reduce job is always 

performed after the map job. Although MapReduce 

had higher performance while comparing with 

traditional data mining algorithm, it has some 

important short comings. It may inefficient for 

application that share data across multiple steps. 

 

3.3. Spark Framework 
 

Apache Spark [7] is a fast and general engine 

for large-scale data processing. It has an advanced 

DAG (Directed Acyclic Graph) execution engine that 

supports acyclic data flow and in-memory 

computing. The core abstraction of Spark is Resilient 

Distributed Dataset (RDD) which has a better ability 

of computing and fault tolerance. So, Spark can allow 

us to store a data cache in memory, to perform 

computation and iteration for the same data directly 

from memory. It saves huge amount of disk I/O 

operation time. Therefore, it is more suitable for 

developing scalable machine learning algorithms. 

 

3.4. Apache Mahout  
 

Apache Mahout [8] is an environment for 

creating scalable, performant, machine learning 

applications. It is a machine learning library that runs 
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over the Hadoop system for solving the clustering 

and classification problems. It born a new generation 

of mahout, linear algebra environment, known as the 

code name “Mahout Samsara”(release 0.10.0 or 

later). MapReduce was not a very good fit for most of 

the machine learning that mahout pioneered. In place 

of Hadoop MapReduce, Mahout has been focusing 

on implementing flexible and backend-agnostic 

machine learning environment. 

Mahout Samsara is a new generation of 

mahout. It is also known as “Beyond MapReduce” 

because it is the part of mahout that deals with more 

advanced back-ends, post-MapReduce generation: 

Spark, Flink, and H2O. These backends extend the 

set of distributed paradigms beyond just MapReduce. 

Therefore, machine learning algorithms built with the 

mahout Samsara DSL are better served for iterative 

nature of applications. 

 

4. Scalable Naïve Bayes Classifier (SNB) 
 

Naïve Bayes algorithm is a popular algorithm 

in text classification field. It is a simple probabilistic 

classifier based on applying Bayes’ theorem with 

strong (naïve) independence assumptions between the 

features.  It can be used for binary and multiclass 

classification. With the rapid growth of online 

documents on the web, the ability to automatically 

mine useful information from massive data has been 

a common challenge for traditional Naïve Bayes 

classifier. Therefore scalable Naïve Bayes classifier 

has been developed on distributed computing 

frameworks to meet the needs of big data 

classification in terms of memory requirements and 

computing power.  

 

4.1 SNB on MapRedcue 
 

On top of Hadoop MapReduce and HDFS, 

Naïve Bayes classifier can scale up to classify 

millions of data. The issue of scalability was seldom 

solved using actual scaling in machine learning. 

Therefore, SNB on MapReduce can process the vast 

amount of data with parallel and distributed 

processing. Figure 1 shows a SNB on MapReduce 

architecture.   

Despite its popularity, there are some 

limitations of MapReduce to develop for scalable 

machine learning algorithms. For distributed parallel 

computing on large scale data, MapReduce consists 

of two main phases: map and reduce. Map takes a set 

of data and converts it into another set of data, where 

individual element are broken down <key, value> 

pairs and Reduce takes the output from the map as 

input and process further. The intermediate and 

output results of each phase are stored in HDFS. 

MapReduce requires a lot of time to perform these 

tasks thereby increasing latency. This may become 

overhead and implementing iterative map reduce 

jobs is expensive due to the huge space 

consumption by each job. 
 

 
 

Figure 1. SNB on MapReduce 

 

4.2.  SNB on Beyond MapReduce 

 
Samsara currently has two flavors of Naïve 

Byes implemented its distribution. The first is 

standard Multinomial Naïve Bayes (“MNB” or 

“Bayes”) and the latter is a variation on Transformed 

Weight-normalized Complement Naïve Bayes 
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(“TWCNB” or “CBayes”) [9]. In this paper, 

Samsara’s MNB is used for evaluation and Apache 

Spark is used as backend processing engine.  

 

 
Figure 2. Processing Stages of SNB on 

MapReduce 

 

SNB on Beyond MapReduce is divided into 

three stages: transformation, training and label 

assignment. The processing stages of SNB on 

Beyond MapReduce are shown in Figure 2. In the 

transformation stage, the dataset is acquired and 

vectorized the document. In order to make good use 

of the computing resources, Hadoop cluster is 

implemented. Hadoop is a framework that admits the 

data in sequence file format. Mahout Samsara over 

Hadoop also admits the data in the sequence file 

directory. The input data is converted to sequence file 

format to parse the <text> element of each document. 

After taking the sequence file conversion phase, the 

documents are vectorized using mahout seq2sparse. 

It converts from the sequence file directory to vector 

format. The sequence file will be accepted as input 

and produce the output as vector using a weighting 

factor like TF-IDF (Term frequency-Inverse 

Document Frequency) scheme. 

In training stage, SNB on Beyond MapReduce 

uses the Spark random Split API to split the training 

and testing sets. Since Spark backend environment is 

chosen, the algorithm in Mahout Samsara can take 

advantages of Spark native function. SNB stores the 

class label of each vectorized document as the row 

keys. And then, it extracts the all possible document 

identifier for each document. 

In label assignment stage, SNB assigns a label 

to a vectorized document using a classification 

function. It predicts a classification of the document 

by assigning a class with the largest posterior 

probability. Figure 3 shows a SNB on Beyond 

MapReduce architecture.   

 

 
 

Figure 3. SNB on Beyond MapReduce 

 

5. Performance Evaluation 
 

This section compares and analyzes the 

performance of SNB on MapReduce and Beyond 

MapReduce. Instead, “scalable” machine learning is 

almost always based on finding more efficient 

algorithms, and most often, approximations to the 

original algorithm which can be computed much 

more efficiently. SNB on Beyond MapReduce takes 

the advantages of Spark which support in-memory 

computing. Therefore it provides faster computing 

with saving resource consumptions. Then, the 

performance analysis of SNB on MapReduce and 

Beyond MapReduce will be evaluated using 

confusion matrix which records correctly and 

incorrectly recognized examples for each class.  
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The four matrices of performance that measure 

the classification quality for the positive and negative 

classes independently are: 

  

Accuracy = 
�����

�����������
                               (1) 

 

           TPrate  =  
��

�����
                           (2) 

 

True Positive rate TPrate is the percentage of 

positive cases correctly classified as belonging to the 

positive class. 

 

  TNrate  =  
��

�����
                                  (3) 

 

 True Negative rate TNrate is the percentage of 

negative cases correctly classified as belonging to the 

negative class. 

 

  FPrate  =  
��

�����
                                  (4) 

           

False Positive rate FPrate is the percentage of 

negative cases misclassified as belonging to the 

positive class. 

 

          FNrate  =  
��

�����
                                           (5) 

           

False Negative rate FNrate  is the percentage of 

positive cases misclassified as belonging to the 

negative class. 

 

5.1. Experimental Environment  
 

The two frameworks are implemented on 

distributed Hadoop cluster for performance 

evaluation. To build a storage cluster, 3 VMs are 

created for each cluster. All the experiments have 

been carried out over a Hadoop cluster of three 

computing nodes having configuration machine of 

Intel CORE i7 processor, 8 GB of RAM, 1 TB HDD 

on Linux Ubuntu-16.04 system.   

The specific details of the software used and 

its configuration are open-sour Apache Hadoop 

distribution (Hadoop 2.6.0), apache spark (1.5.2), the 

latest release of Mahout Samsara (0.12.3) and 

Mahout (0.9). The descriptions of datasets used in 

this paper are presented in table 1. 

 

 

 

 

Table 1.Experimental datasets 

 

Dataset Description 
D1 Enron Data set  [10] 

-Number of email (ham) : 52340 

-Number of email (spam) : 30659 
D2 Movie Reviews Data set [11] 

- Rotten Tomatoes movies review 

dataset 

-contain 1000 positive and 1000 

negative reviews 
D3 Twitter Data set [12] 

-Sentiment data for product reviews 

-contain 554470 positive and 

494105 negative reviews 
 

5.2. Performance Evaluation and Result 

Discussion 
 

The performances analysis of SNB on 

MapReduce and Beyond MapReduce is presented in 

this section. For comparing with different datasets, 

the datasets are partitioned into 60/40 ratio for 

training and testing. The accuracy comparison of 

each dataset is shown in Figure 4. The results clearly 

show that SNB on Beyond MapReduce performs the 

large amount of data in minimal processing time than 

SNB on MapReduce. 

In Dataset D1, SNB on Beyond MapReduce 

can correctly classify the 82999 emails within 39 

seconds while SNB on MapReduce took 119 

seconds. In dataset D2, SNB on Beyond MapReduce 

processed the movie review data within 40 seconds 

and SNB on MapReduce took 150 seconds. In dataset 

D3, SNB on Beyond MapReduce only took 93 

seconds for processing tweet data although SNB on 

MapReduce took 280 seconds.  

 

 
Figure 4.  SNB on MapReduce vs. SNB on Beyond 

MapReduce (time) 
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The advantage of SNB on Beyond MapReduce 

is preserved over large datasets as well. Because it 

takes the full advantages of Spark’s in-memory 

computing and other wonderful native function. 

Moreover, it uses the Samsara’s text vectorization 

pipeline which is slightly different TF and IDF 

transformation of SNB on MapReduce. Therefore the 

label extraction and summation of TF_IDF 

observations per label require some shuffling and 

take a few times for efficiently big data classification. 

According to the comparison results, SNB on 

Beyond MapReduce provides the minimal processing 

time than SNB on MapReduce over the different 

experimental datasets. 

In this paper, the issue of scalability was 

seldom solved using actual scaling in machine 

learning. Figure 5 shows the accuracy comparison of 

SNB on MapReduce and Beyond MapReduce. A 

scalable Naïve Bayes classifier means having a 

learning algorithm which can deal with any amount 

of data, without consuming ever growing amounts of 

resources like memory and providing the accurate 

results. 

 

 
 

Figure 5.  SNB on MapReduce vs. SNB on Beyond 

MapReduce (accuracy) 

 

With the rapid development of information 

technology, faster is better in computing. Even 

though the accuracies of both of which are not 

slightly different, SNB on Beyond MapReduce can 

provide not only faster computing but also good 

performance results in term of accuracy.  

 

6. Conclusion 

 
Scalability has become one of the core concept 

slash buzzwords of big data. Big data requires a 

scalable and parallel machine learning algorithm for 

efficiently processing. Analytical processing time is 

required to take minimal time to get results. In this 

paper, the performance of a scalable naïve Bayes 

classifier on MapReduce and Beyond MapReduce is 

compared and analyzed. SNB on Beyond MapReduce 

can parallel process on big data with efficient 

computing. Our comparative study can show that 

SNB on Beyond MapReduce has a better accuracy 

and faster processing time than SNB on MapReduce. 

It also provides the good scalable performance on 

distributed environment. As future work, the issues in 

big data classification with scalability will be 

considered. Regarding the performance analysis of 

SNB on MapReduce and Beyond MapReduce, the 

techniques to deal with scalability of big data will be 

studied. 
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