
58

Performance Analysis of a Scalable Naïve Bayes Classifier on
MapReduce and Beyond MapReduce

Myat Cho Mon Oo1, Thandar Thein2
University of Computer Studies, Yangon1, University of Computer Studies, Maubin2

myatchomonoo@ucsy.edu.mm1, thandartheinn@gmail.com2

Abstract

Many real world areas from different sources

generate the big data with large volume of high

velocity, complex and variable data. Big data

becomes a challenge when they are difficult to

process and extract knowledge using traditional

analysis tools. Therefore the scalable machine

learning algorithms are needed for processing such

big data. Recently Hadoop MapReduce framework

has been adapted for parallel computing. MapReduce

may not fit for most of the real world data

applications. For large scale machine learning on

distributed system, Spark has finally become much

more viable beyond MapReduce. Although both of

these frameworks are Apache-hosted data analytic

framework, their performance varies significantly

based on the use case under their implementation.

This paper aims to analyze the performance of

scalable Naïve Bayes classifier (SNB) which is

implemented on MapReduce and Beyond MapReduce

over different real world datasets. The comparison

results show that SNB on Beyond MapReduce

provides minimal processing time than SNB on

MapReduce for efficiently big data classification.

Keywords: Big Data, Beyond MapReduce,

MapReduce, scalable Naïve Bayes, Spark

1. Introduction

The massive growth of big data is increasing

overwhelmingly during the past decades. The IBM

Big Data Flood Infographic shows that 2.5 quintillion

bytes of data are created every day [1]. Big data

doesn't only refer to massive data, but also a series of

techniques which turn a flood of data into valuable

information. Traditional data mining techniques are

not well suited to process the full value of big data.

Therefore, an efficient and distributed processing

model is needed to process and analyze such data.

For processing huge amount of data, Hadoop is

becoming the core technology to solve the huge data

problems for large organizations with cloud storage.

A commonly used architecture for Hadoop consists

of Hadoop Distributed File System (HDFS) for big

data storage and MapReduce for distributed parallel

computing.

Machine learning is also ideal for exploiting

the opportunities hidden insight in big data. Apache

Mahout is an open source machine learning library

built on top of Hadoop to provide distributed

analytics capabilities. Although it was originally

developed with MapReduce based algorithm,

MapReduce was inefficient for most of the scalable

machine learning that Mahout pioneered because of

its limitation. Also, alternative frameworks such as

Spark have finally become much more viable.

Spark absorbs the advantages of Hadoop

MapReduce, unlike MapReduce, the intermediate and

output results of the Spark jobs can be stored in

memory, which is called Memory Computing.

Memory Computing improves the efficiency of data

computing. So, Spark is better suited for iterative

applications, such as Data Mining and Machine

Learning [2]. Starting from the release 0.10.0, a new

generation of mahout was born for building backend

independent programming environment, also called

the code name, “Samsara”. Mahout Samsara is

backend-agnostic and uses a Scala-based

programming environment to support writing parallel

mathematical languages.

In this paper, the performances of SNB on

MapReduce and Beyond MapReduce are compared

and analyzed for efficiently big data classification.

The remainder of this paper is organized as follow.

First, the related work of this paper is described in

section 2. Then, some background information is

presented in section 3. And then architecture of SNB

on MapReduce and Beyond MapReduce is presented

in section 4. After that the performance evaluation

and result discussions are shown in section 5.

Finally, the conclusion of this paper is summarized

in section 6.

59

2. Related Work

There are many types of existing big data

processing model for large scale data processing.

Most of them are open source big data technologies

and different performance on different data natures.

To analyze the big data and exact useful information,

choosing the efficient model from performance

analysis is important. The authors [3] analyzed the

performance of K-mean algorithm on MapReduce

and Spark. They compared the Map and Reduce

phases of K-mean on these frameworks. They

showed that Spark has faster processing time than

MapReduce for clustering data.

To identify and explain the impact of different

architectural choices, the authors [4] proposed a

methodology by comparing the performance of Spark

and Flink for big data analytics. Their key finding

was that there none of the two framework

outperforms the other for all data types, sizes and job

patterns.

With the rapid growing amount of data, the

need for scalable model to store and process these

data is increasing. The authors [5] performed the

comparison on scalability for batch big data

processing on Spark and Flink. They used Spark

MLlib and Flink for their comparative study. Their

experimental results show that Spark has better

performance and overall lower runtime than Flink.

This paper intends to compare the performance

of SNB on MapReduce and Beyond MapReduce for

efficiently big data classification. By using SNB on

Beyond MapReduce, it performs efficiently

processing on big data in distributed environment and

provides good performance results than SNB on

MapReduce.

3. Preliminaries

This section provides the preliminaries of the

paper. First, section 3.1 introduces Apache Hadoop

framework. Section 3.2 and 3.3 present MapReduce

and Apache Spark, highlighting their architectural

differences. Then section 3.4 describes Apache

Mahout and Mahout Samsara.

3.1. Apache Hadoop Framework

 Apache Hadoop [6] is an open-source

software framework for storing and processing large

data in a distributed manner. It supports data

intensive distributed applications on large clusters

built of commodity hardware. This framework is

designed to be scalable, which allows the user to add

more nodes as the application requires. Hadoop

consists of the Hadoop Distributed File System

(HDFS) for big data storage and MapReduce

framework for distributed processing. Hadoop cluster

consists of a single master node and many worker

nodes. HDFS is based on master/slave architecture.

The development of Hadoop-based data mining

techniques has been widely spread, because of its

fault-tolerant mechanism and its ease of use.

3.2. MapReduce Framework

 The MapReduce framework [13] is the core

of Apache Hadoop. This programming paradigm

provides for massive scalability across hundreds or

thousands of servers in a Hadoop cluster. It consists

of two main phases: map and reduce. In the map

phase, it takes a set of data and converts it into

another set of data, where individual elements are

broken down into tuples as key-value (< k, v >) pairs.

In the reduce phase, the reduce job takes the output

from a map as input and combines those data tuples

into a smaller set of tuples. As the sequence of the

name MapReduce implies, the reduce job is always

performed after the map job. Although MapReduce

had higher performance while comparing with

traditional data mining algorithm, it has some

important short comings. It may inefficient for

application that share data across multiple steps.

3.3. Spark Framework

Apache Spark [7] is a fast and general engine

for large-scale data processing. It has an advanced

DAG (Directed Acyclic Graph) execution engine that

supports acyclic data flow and in-memory

computing. The core abstraction of Spark is Resilient

Distributed Dataset (RDD) which has a better ability

of computing and fault tolerance. So, Spark can allow

us to store a data cache in memory, to perform

computation and iteration for the same data directly

from memory. It saves huge amount of disk I/O

operation time. Therefore, it is more suitable for

developing scalable machine learning algorithms.

3.4. Apache Mahout

Apache Mahout [8] is an environment for

creating scalable, performant, machine learning

applications. It is a machine learning library that runs

60

over the Hadoop system for solving the clustering

and classification problems. It born a new generation

of mahout, linear algebra environment, known as the

code name “Mahout Samsara”(release 0.10.0 or

later). MapReduce was not a very good fit for most of

the machine learning that mahout pioneered. In place

of Hadoop MapReduce, Mahout has been focusing

on implementing flexible and backend-agnostic

machine learning environment.

Mahout Samsara is a new generation of

mahout. It is also known as “Beyond MapReduce”

because it is the part of mahout that deals with more

advanced back-ends, post-MapReduce generation:

Spark, Flink, and H2O. These backends extend the

set of distributed paradigms beyond just MapReduce.

Therefore, machine learning algorithms built with the

mahout Samsara DSL are better served for iterative

nature of applications.

4. Scalable Naïve Bayes Classifier (SNB)

Naïve Bayes algorithm is a popular algorithm

in text classification field. It is a simple probabilistic

classifier based on applying Bayes’ theorem with

strong (naïve) independence assumptions between the

features. It can be used for binary and multiclass

classification. With the rapid growth of online

documents on the web, the ability to automatically

mine useful information from massive data has been

a common challenge for traditional Naïve Bayes

classifier. Therefore scalable Naïve Bayes classifier

has been developed on distributed computing

frameworks to meet the needs of big data

classification in terms of memory requirements and

computing power.

4.1 SNB on MapRedcue

On top of Hadoop MapReduce and HDFS,

Naïve Bayes classifier can scale up to classify

millions of data. The issue of scalability was seldom

solved using actual scaling in machine learning.

Therefore, SNB on MapReduce can process the vast

amount of data with parallel and distributed

processing. Figure 1 shows a SNB on MapReduce

architecture.

Despite its popularity, there are some

limitations of MapReduce to develop for scalable

machine learning algorithms. For distributed parallel

computing on large scale data, MapReduce consists

of two main phases: map and reduce. Map takes a set

of data and converts it into another set of data, where

individual element are broken down <key, value>

pairs and Reduce takes the output from the map as

input and process further. The intermediate and

output results of each phase are stored in HDFS.

MapReduce requires a lot of time to perform these

tasks thereby increasing latency. This may become

overhead and implementing iterative map reduce

jobs is expensive due to the huge space

consumption by each job.

Figure 1. SNB on MapReduce

4.2. SNB on Beyond MapReduce

Samsara currently has two flavors of Naïve

Byes implemented its distribution. The first is

standard Multinomial Naïve Bayes (“MNB” or

“Bayes”) and the latter is a variation on Transformed

Weight-normalized Complement Naïve Bayes

…

HDFS

Stora

ge

Laye

r

Proce

ssing

Layer

Scalable Naïve Bayes
Algorithm

Appl

icati

on

Laye

r

Data Node Data Node

Resource Manager

YARN

Node Manager

Map Task

Data Node

Containers

Application

Master

Slave Node 1

Node Manager

Reduce Task

Data Node

Containers

Map Task

Slave Node n
…

61

(“TWCNB” or “CBayes”) [9]. In this paper,

Samsara’s MNB is used for evaluation and Apache

Spark is used as backend processing engine.

Figure 2. Processing Stages of SNB on

MapReduce

SNB on Beyond MapReduce is divided into

three stages: transformation, training and label

assignment. The processing stages of SNB on

Beyond MapReduce are shown in Figure 2. In the

transformation stage, the dataset is acquired and

vectorized the document. In order to make good use

of the computing resources, Hadoop cluster is

implemented. Hadoop is a framework that admits the

data in sequence file format. Mahout Samsara over

Hadoop also admits the data in the sequence file

directory. The input data is converted to sequence file

format to parse the <text> element of each document.

After taking the sequence file conversion phase, the

documents are vectorized using mahout seq2sparse.

It converts from the sequence file directory to vector

format. The sequence file will be accepted as input

and produce the output as vector using a weighting

factor like TF-IDF (Term frequency-Inverse

Document Frequency) scheme.

In training stage, SNB on Beyond MapReduce

uses the Spark random Split API to split the training

and testing sets. Since Spark backend environment is

chosen, the algorithm in Mahout Samsara can take

advantages of Spark native function. SNB stores the

class label of each vectorized document as the row

keys. And then, it extracts the all possible document

identifier for each document.

In label assignment stage, SNB assigns a label

to a vectorized document using a classification

function. It predicts a classification of the document

by assigning a class with the largest posterior

probability. Figure 3 shows a SNB on Beyond

MapReduce architecture.

Figure 3. SNB on Beyond MapReduce

5. Performance Evaluation

This section compares and analyzes the

performance of SNB on MapReduce and Beyond

MapReduce. Instead, “scalable” machine learning is

almost always based on finding more efficient

algorithms, and most often, approximations to the

original algorithm which can be computed much

more efficiently. SNB on Beyond MapReduce takes

the advantages of Spark which support in-memory

computing. Therefore it provides faster computing

with saving resource consumptions. Then, the

performance analysis of SNB on MapReduce and

Beyond MapReduce will be evaluated using

confusion matrix which records correctly and

incorrectly recognized examples for each class.

…

…

Task Task

Cache Executor

Worker Node

Cluster Manager

Task

Task

Cache Executor

Worker Node

Spark Context

HDFS

Stora

ge

Laye

r

Proce

ssing

Layer

Samsara

Scalable Naïve Bayes
Algorithm

Appl

icati

on

Laye

r

Data Node Data Node

 Dataset Predicting
Class

Vectorization
and

 Preprocessing

Extracting
the

Class
Labels

Stage1:

Transformation

Stage2:

Training

Stage3:

Label

assignment

62

The four matrices of performance that measure

the classification quality for the positive and negative

classes independently are:

Accuracy =
�����

�����������
 (1)

 TPrate =
��

�����
 (2)

True Positive rate TPrate is the percentage of

positive cases correctly classified as belonging to the

positive class.

 TNrate =
��

�����
 (3)

 True Negative rate TNrate is the percentage of

negative cases correctly classified as belonging to the

negative class.

 FPrate =
��

�����
 (4)

False Positive rate FPrate is the percentage of

negative cases misclassified as belonging to the

positive class.

 FNrate =
��

�����
 (5)

False Negative rate FNrate is the percentage of

positive cases misclassified as belonging to the

negative class.

5.1. Experimental Environment

The two frameworks are implemented on

distributed Hadoop cluster for performance

evaluation. To build a storage cluster, 3 VMs are

created for each cluster. All the experiments have

been carried out over a Hadoop cluster of three

computing nodes having configuration machine of

Intel CORE i7 processor, 8 GB of RAM, 1 TB HDD

on Linux Ubuntu-16.04 system.

The specific details of the software used and

its configuration are open-sour Apache Hadoop

distribution (Hadoop 2.6.0), apache spark (1.5.2), the

latest release of Mahout Samsara (0.12.3) and

Mahout (0.9). The descriptions of datasets used in

this paper are presented in table 1.

Table 1.Experimental datasets

Dataset Description
D1 Enron Data set [10]

-Number of email (ham) : 52340

-Number of email (spam) : 30659
D2 Movie Reviews Data set [11]

- Rotten Tomatoes movies review

dataset

-contain 1000 positive and 1000

negative reviews
D3 Twitter Data set [12]

-Sentiment data for product reviews

-contain 554470 positive and

494105 negative reviews

5.2. Performance Evaluation and Result

Discussion

The performances analysis of SNB on

MapReduce and Beyond MapReduce is presented in

this section. For comparing with different datasets,

the datasets are partitioned into 60/40 ratio for

training and testing. The accuracy comparison of

each dataset is shown in Figure 4. The results clearly

show that SNB on Beyond MapReduce performs the

large amount of data in minimal processing time than

SNB on MapReduce.

In Dataset D1, SNB on Beyond MapReduce

can correctly classify the 82999 emails within 39

seconds while SNB on MapReduce took 119

seconds. In dataset D2, SNB on Beyond MapReduce

processed the movie review data within 40 seconds

and SNB on MapReduce took 150 seconds. In dataset

D3, SNB on Beyond MapReduce only took 93

seconds for processing tweet data although SNB on

MapReduce took 280 seconds.

Figure 4. SNB on MapReduce vs. SNB on Beyond

MapReduce (time)

0

50

100

150

200

250

300

350

400

D1 D2 D3

P
ro

ce
ss

in
g

 T
im

e
(s

ec
on

d)

Datasets

SNB on MapReduce

SNB on Beyond MapReduce

63

The advantage of SNB on Beyond MapReduce

is preserved over large datasets as well. Because it

takes the full advantages of Spark’s in-memory

computing and other wonderful native function.

Moreover, it uses the Samsara’s text vectorization

pipeline which is slightly different TF and IDF

transformation of SNB on MapReduce. Therefore the

label extraction and summation of TF_IDF

observations per label require some shuffling and

take a few times for efficiently big data classification.

According to the comparison results, SNB on

Beyond MapReduce provides the minimal processing

time than SNB on MapReduce over the different

experimental datasets.

In this paper, the issue of scalability was

seldom solved using actual scaling in machine

learning. Figure 5 shows the accuracy comparison of

SNB on MapReduce and Beyond MapReduce. A

scalable Naïve Bayes classifier means having a

learning algorithm which can deal with any amount

of data, without consuming ever growing amounts of

resources like memory and providing the accurate

results.

Figure 5. SNB on MapReduce vs. SNB on Beyond

MapReduce (accuracy)

With the rapid development of information

technology, faster is better in computing. Even

though the accuracies of both of which are not

slightly different, SNB on Beyond MapReduce can

provide not only faster computing but also good

performance results in term of accuracy.

6. Conclusion

Scalability has become one of the core concept

slash buzzwords of big data. Big data requires a

scalable and parallel machine learning algorithm for

efficiently processing. Analytical processing time is

required to take minimal time to get results. In this

paper, the performance of a scalable naïve Bayes

classifier on MapReduce and Beyond MapReduce is

compared and analyzed. SNB on Beyond MapReduce

can parallel process on big data with efficient

computing. Our comparative study can show that

SNB on Beyond MapReduce has a better accuracy

and faster processing time than SNB on MapReduce.

It also provides the good scalable performance on

distributed environment. As future work, the issues in

big data classification with scalability will be

considered. Regarding the performance analysis of

SNB on MapReduce and Beyond MapReduce, the

techniques to deal with scalability of big data will be

studied.

References

[1] Big Data Flood Infographic website. [Online]

Available: https://www.ibm.com/, [Accessed:15-

Sept-2017]

[2] J. Fu, J. Sun, K. Wang, “SPARK—A Big Data

Processing Platform for Machine Learning”, in

Proceedings of IEEE International Conference

on Industrial Informatics - Computing

Technology, Intelligent Technology, Industrial

Information Integration, 2016, pp. 48-51

[3] S. Gopalani, R. Arora, “Comparing Apache

Spark and Map Reduce with Performance

Analysis using K-Means”, in Proceedings of the

International Journal of Computer Applications

(0975 – 8887) Volume 113 – No. 1, March 2015

[4] O. Marcu, A. Costan, G. Antoniu, M.

Hernandez, “Spark versus Flink: Understanding

Performance in Big Data Analytics

Frameworks”, in Proceedings of IEEE

International Conference on Cluster Computing,

2016, pp. 433-442

[5] D.Gil, S. Gallego, S. García1, and F. Herrera,

“A comparison on scalability for batch big Data

processing on Apache Spark and Apache Flink”,

in Proceedings of Big Data Analytics, Springer

International Publishing, BioMedCentral, March

2017.

[6] Apache Hadoop website. [Online]. Available:

http://hadoop.apache.org/,[Accessed: 12-Aug-

2017]

[7] Apache Spark website. [Online]. Available:

http://Spark.apache.org/, [Accessed: 12-Sept-

2017]

0

20

40

60

80

100

120

D1 D2 D3

A
cc

ur
ac

y
(%

)

Datasets

SNB on MapReduce

SNB on Beyond MapReduce

http://hadoop.apache.org/,%5bAccessed
http://spark.apache.org/

64

[8] Apache Mahout website. [Online]. Available:

http://mahout.apache.org/, [Accessed: 12-Sept-

2017]

[9] D. Lyubimov, A. Palumbo. Apache Mahout:

Beyond MapReduce, 1st ed., 2016.

[10] W. Cukierski. The Enron Email Datasets on

kaggle. [Online] Available:

https://www.kaggle.com/wcukierski/enron-

email-dataset, [Accessed: 15-Aug-2017]

[11] Pang and L. Lee. The Movie Review Data on

kaggle. [Online] Available:

https://www.kaggle.com/c/sentiment-analysis-

on-movie-reviews, [Accessed: 15-Aug-2017]

[12] W. Debki. Twitter Data on Data world. [Online]

Available: https://data.world/datasets/twitter,

[Accessed: 12-Aug-2017]

[13] Hadoop MapReduce website. [Online]

Available:

https://www.tutorialspoint.com/hadoop/hadoop_

mapreduce.htm [Accessed: 12-Aug-2017]

http://mahout.apache.org/

