Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "9d8d5560-c38e-4269-b2ac-48b285cabb57"}, "_deposit": {"id": "4434", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4434"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4434", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Iris Recognition using Secant Lines Segments Histogram", "subitem_1551255648112": "en_US"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Biometrics is a method for recognizing basedon physiological and behavioral characteristics. Irisrecognition is one of the robust biometrictechnologies used for authentication applications. Aniris recognition system is composed of segmentation,normalization, feature extraction and matching. Theperformance of iris recognition system depends onthe selection of iris features. Most commercial irisrecognition systems used patented algorithmsdeveloped by Daugman’s Gabor filter for featureextraction. These methods have large computation.To overcome this problem, a new effective method,Secant Lines Segments Histogram, is proposed forextracting features of iris. In this paper, HoughTransform is applied for localizing the iris region.The segmented iris is normalized using Daugman’sRubber Sheet Model. For extracting iris features,Secant Lines Segments Histogram is used. The twoiris feature vectors are matched using EuclideanDistance. The proposed iris recognition systemreduces the computation and time load for extractingfeatures of the iris."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Daugman’s Gabor Filter"}, {"interim": "Secant Lines Segments Histogram"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-10-25"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Iris Recognition using Secant Lines Segments Histogram.pdf", "filesize": [{"value": "655 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 655000.0, "url": {"url": "https://meral.edu.mm/record/4434/files/Iris Recognition using Secant Lines Segments Histogram.pdf"}, "version_id": "3073ceda-c36e-4ede-ae2e-e48dc6765179"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fourteenth International Conference On Computer Applications (ICCA 2016)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Win, Ei Phyu"}, {"subitem_authors_fullname": "Aye, Nyein"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2016-02-25"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/2367"}, "item_title": "Iris Recognition using Secant Lines Segments Histogram", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004434", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-10-25"}, "publish_date": "2019-10-25", "publish_status": "0", "recid": "4434", "relation": {}, "relation_version_is_last": true, "title": ["Iris Recognition using Secant Lines Segments Histogram"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Iris Recognition using Secant Lines Segments Histogram

http://hdl.handle.net/20.500.12678/0000004434
http://hdl.handle.net/20.500.12678/0000004434
ef59c69a-873b-4f76-b2d7-46d313c04dd8
9d8d5560-c38e-4269-b2ac-48b285cabb57
None
Preview
Name / File License Actions
Iris Iris Recognition using Secant Lines Segments Histogram.pdf (655 Kb)
Publication type
Article
Upload type
Publication
Title
Title Iris Recognition using Secant Lines Segments Histogram
Language en_US
Publication date 2016-02-25
Authors
Win, Ei Phyu
Aye, Nyein
Description
Biometrics is a method for recognizing basedon physiological and behavioral characteristics. Irisrecognition is one of the robust biometrictechnologies used for authentication applications. Aniris recognition system is composed of segmentation,normalization, feature extraction and matching. Theperformance of iris recognition system depends onthe selection of iris features. Most commercial irisrecognition systems used patented algorithmsdeveloped by Daugman’s Gabor filter for featureextraction. These methods have large computation.To overcome this problem, a new effective method,Secant Lines Segments Histogram, is proposed forextracting features of iris. In this paper, HoughTransform is applied for localizing the iris region.The segmented iris is normalized using Daugman’sRubber Sheet Model. For extracting iris features,Secant Lines Segments Histogram is used. The twoiris feature vectors are matched using EuclideanDistance. The proposed iris recognition systemreduces the computation and time load for extractingfeatures of the iris.
Keywords
Daugman’s Gabor Filter, Secant Lines Segments Histogram
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/2367
Journal articles
Fourteenth International Conference On Computer Applications (ICCA 2016)
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 14:47:46.806045
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL