Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking


Index Link

Index Tree

  • RootNode

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "9c4f9d50-ed2a-4098-b842-864960f9446e"}, "_deposit": {"id": "4237", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4237"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4237", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Hybrid learning of wrapper and embedded method for feature selection of medical data", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Several recent machine learning publicationsdemonstrate the utility of using feature selectionalgorithms in many learning. Feature selection helps toacquire better understanding about the data by tellingwhich the important features are and how they arerelated with each other and it can be applied to bothsupervised and unsupervised learning. This paper aimsto find the best subset of features that not onlymaximizes the classification accuracy but minimizes thenumber of features. The other reason is to make awareof the necessity and benefits of applying featureselection methods. In this paper, genetic algorithm isone of the wrapper feature selection methods and it isused to reduce the irrelevant attributes of data.Embedded feature selection method (C4.5) is used toprune the features selected by genetic algorithm whichis suffering from overfitting problem. By combininggenetic algorithm with decision tree, this methodenhances the Bayesian classification to eliminateunnecessary features and produces accurate classifier."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Genetic Algorithm"}, {"interim": "Decision tree"}, {"interim": "feature selection"}, {"interim": "Bayesian Classifier"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-03"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "9059.pdf", "filesize": [{"value": "71 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 71000.0, "url": {"url": "https://meral.edu.mm/record/4237/files/9059.pdf"}, "version_id": "6557b8c9-cd07-40aa-bbe7-72380aa17c53"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Ninth International Conference On Computer Applications (ICCA 2011)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Thandar, Aye Mya"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2011-05-05"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/196"}, "item_title": "Hybrid learning of wrapper and embedded method for feature selection of medical data", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004237", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-03"}, "publish_date": "2019-07-03", "publish_status": "0", "recid": "4237", "relation": {}, "relation_version_is_last": true, "title": ["Hybrid learning of wrapper and embedded method for feature selection of medical data"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Hybrid learning of wrapper and embedded method for feature selection of medical data

http://hdl.handle.net/20.500.12678/0000004237
http://hdl.handle.net/20.500.12678/0000004237
7f69d1c1-c6ae-4a92-afc7-1304e78edeb7
9c4f9d50-ed2a-4098-b842-864960f9446e
None
Preview
Name / File License Actions
9059.pdf 9059.pdf (71 Kb)
Publication type
Article
Upload type
Publication
Title
Title Hybrid learning of wrapper and embedded method for feature selection of medical data
Language en
Publication date 2011-05-05
Authors
Thandar, Aye Mya
Description
Several recent machine learning publicationsdemonstrate the utility of using feature selectionalgorithms in many learning. Feature selection helps toacquire better understanding about the data by tellingwhich the important features are and how they arerelated with each other and it can be applied to bothsupervised and unsupervised learning. This paper aimsto find the best subset of features that not onlymaximizes the classification accuracy but minimizes thenumber of features. The other reason is to make awareof the necessity and benefits of applying featureselection methods. In this paper, genetic algorithm isone of the wrapper feature selection methods and it isused to reduce the irrelevant attributes of data.Embedded feature selection method (C4.5) is used toprune the features selected by genetic algorithm whichis suffering from overfitting problem. By combininggenetic algorithm with decision tree, this methodenhances the Bayesian classification to eliminateunnecessary features and produces accurate classifier.
Keywords
Genetic Algorithm, Decision tree, feature selection, Bayesian Classifier
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/196
Journal articles
Ninth International Conference On Computer Applications (ICCA 2011)
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 14:22:59.610630
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL