Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "945ae758-0aa4-4c50-811b-87a4f49167d6"}, "_deposit": {"id": "4019", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4019"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4019", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Improving Processing Time of Big Data Analytic on Mobile Cloud Computing", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "The growth of big data is a result of the varietyof data through user generated data from manydevices. Today, big data analytics, extracting dataknowledge from large datasets, is shifted from personaldesktop computer to mobile devices because of itsanywhere-anytime access facilities. Nevertheless,mobile devices still have many resources limitations.Mobile cloud computing is a best solution for theseproblems, because it can support infinite computingpower for mobile devices. This paper proposes a newbig data analytic platform on mobile cloud computingwith efficient processing time. In proposed platform,RESTful web service technology and MapReduceTransformation Model are applied to produce highquery processing performance with seamlessconnectivity. To reduce the communication costbetween web service and mobile device, we use JSONformat output result. According to the results, weconclude that the communication cost of proposedplatform is better than traditional way."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Big data"}, {"interim": "Big data analytics"}, {"interim": "RESTful"}, {"interim": "MapReduce"}, {"interim": "JSON"}, {"interim": "Mobile Cloud Computing"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-03"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "4.Improving Processing Time of Big Data Analytic on Mobile C.pdf", "filesize": [{"value": "199 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 199000.0, "url": {"url": "https://meral.edu.mm/record/4019/files/4.Improving Processing Time of Big Data Analytic on Mobile C.pdf"}, "version_id": "717b3f04-647a-46cc-aee8-3c37c4d76b7e"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Thirteenth International Conferences on Computer Applications(ICCA 2015)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Win, Ngu Wah"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2015-02-05"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/173"}, "item_title": "Improving Processing Time of Big Data Analytic on Mobile Cloud Computing", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004019", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-03"}, "publish_date": "2019-07-03", "publish_status": "0", "recid": "4019", "relation": {}, "relation_version_is_last": true, "title": ["Improving Processing Time of Big Data Analytic on Mobile Cloud Computing"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Improving Processing Time of Big Data Analytic on Mobile Cloud Computing

http://hdl.handle.net/20.500.12678/0000004019
http://hdl.handle.net/20.500.12678/0000004019
ea8319df-1fac-425c-b4f5-898aa4d6ae81
945ae758-0aa4-4c50-811b-87a4f49167d6
None
Preview
Name / File License Actions
4.Improving 4.Improving Processing Time of Big Data Analytic on Mobile C.pdf (199 Kb)
Publication type
Article
Upload type
Publication
Title
Title Improving Processing Time of Big Data Analytic on Mobile Cloud Computing
Language en
Publication date 2015-02-05
Authors
Win, Ngu Wah
Description
The growth of big data is a result of the varietyof data through user generated data from manydevices. Today, big data analytics, extracting dataknowledge from large datasets, is shifted from personaldesktop computer to mobile devices because of itsanywhere-anytime access facilities. Nevertheless,mobile devices still have many resources limitations.Mobile cloud computing is a best solution for theseproblems, because it can support infinite computingpower for mobile devices. This paper proposes a newbig data analytic platform on mobile cloud computingwith efficient processing time. In proposed platform,RESTful web service technology and MapReduceTransformation Model are applied to produce highquery processing performance with seamlessconnectivity. To reduce the communication costbetween web service and mobile device, we use JSONformat output result. According to the results, weconclude that the communication cost of proposedplatform is better than traditional way.
Keywords
Big data, Big data analytics, RESTful, MapReduce, JSON, Mobile Cloud Computing
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/173
Journal articles
Thirteenth International Conferences on Computer Applications(ICCA 2015)
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 13:55:56.438639
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL