MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "d71cb47f-5d9d-4ccd-b4c6-4948ebb05a38"}, "_deposit": {"id": "314", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "314"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/314", "sets": ["user-ydbu"]}, "communities": ["ydbu"], "control_number": "314", "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Differentiability of Norms and Rotundity in Tree", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "In this paper, the basic concepts of differentiability and rotundity of norms are first\r studied. And then the convex function is discussed. After definition Kadec-Klee property\r and the James tree space JT, the dual space JT* are discussed. The double dual space is a\r subspace of a weakly compactly generated and dual space admits an equivalent locally\r uniformly rotund norm."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "differentiability"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2020-05-05"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Be Be.pdf", "filesize": [{"value": "456 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 456000.0, "url": {"url": "https://meral.edu.mm/record/314/files/Be Be.pdf"}, "version_id": "3049aea0-7ac0-4c0f-8e2d-641dcde5c859"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "1", "subitem_journal_title": "Yadanabon University Research Journal", "subitem_volume": "9"}]}, "item_1583103147082": {"attribute_name": "Conference papaers", "attribute_value_mlt": [{}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_supervisor(s)": []}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Be Be"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Journal article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2018"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "https://oar.ydbu.edu.mm/handle/123456789/265"}, "item_title": "Differentiability of Norms and Rotundity in Tree", "item_type_id": "21", "owner": "1", "path": ["1582966516414"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000000314", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2020-03-05"}, "publish_date": "2020-03-05", "publish_status": "0", "recid": "314", "relation": {}, "relation_version_is_last": true, "title": ["Differentiability of Norms and Rotundity in Tree"], "weko_shared_id": -1}
Differentiability of Norms and Rotundity in Tree
http://hdl.handle.net/20.500.12678/0000000314
http://hdl.handle.net/20.500.12678/0000000314e83a2de2-7a64-4df1-8287-067416872719
d71cb47f-5d9d-4ccd-b4c6-4948ebb05a38
Name / File | License | Actions |
---|---|---|
Be Be.pdf (456 Kb)
|
|
Publication type | ||||||
---|---|---|---|---|---|---|
Journal article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Differentiability of Norms and Rotundity in Tree | |||||
Language | en | |||||
Publication date | 2018 | |||||
Authors | ||||||
Be Be | ||||||
Description | ||||||
In this paper, the basic concepts of differentiability and rotundity of norms are first studied. And then the convex function is discussed. After definition Kadec-Klee property and the James tree space JT, the dual space JT* are discussed. The double dual space is a subspace of a weakly compactly generated and dual space admits an equivalent locally uniformly rotund norm. |
||||||
Keywords | ||||||
differentiability | ||||||
Identifier | https://oar.ydbu.edu.mm/handle/123456789/265 | |||||
Journal articles | ||||||
1 | ||||||
Yadanabon University Research Journal | ||||||
9 | ||||||
Conference papaers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |