Index Link

  • RootNode

Item

{"_buckets": {"deposit": "36bb5a6d-9117-4be0-b98e-c32aa064d00c"}, "_deposit": {"created_by": 12, "id": "9369", "owner": "12", "owners": [12], "owners_ext": {"displayname": "", "username": ""}, "pid": {"revision_id": 0, "type": "depid", "value": "9369"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/00009369"}, "author_link": [], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "A Comparative Study of Recent Trends in Big Data", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "It was estimated that there will be 181 zeta bytes of data in 2025 terming big data. The unexpected occurrence of Covid-19 makes data volume consumed skyrocket making understanding and manipulating such an amount of big data to extract valuable information become a necessary challenge. Data becomes new oil. Challenges for these big data make great changes in the data landscape leading to recent trends in big data. The main prominent trends are the ideology of polyglot persistence to use different data stores with different characteristics in single application, the revisiting of data warehouse concepts and emergence of data, and the choice of machine learning algorithms or ML algorithm to be revisited due to Big Data V characteristics."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Big data"}, {"interim": "Big data characteristics"}, {"interim": "NoSQL data stores"}, {"interim": "polyglot persistence"}, {"interim": "Data Lake"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2024-03-18"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Pwint Phyu Khine (387 to 398).pdf", "filesize": [{"value": "689 KB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_3", "mimetype": "application/pdf", "size": 689000.0, "url": {"url": "https://meral.edu.mm/record/9369/files/Pwint Phyu Khine (387 to 398).pdf"}, "version_id": "0f704c11-9281-4e73-8a57-df3d2f1dee50"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "2022", "subitem_journal_title": "University of Yangon Research Journal", "subitem_pages": "387-398", "subitem_volume": "11, No. 1"}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Pwint Phyu Khine"}, {"subitem_authors_fullname": "San Myint Tin"}, {"subitem_authors_fullname": "Soe Mya Mya Aye"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Journal article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2022-12-31"}, "item_title": "A Comparative Study of Recent Trends in Big Data", "item_type_id": "21", "owner": "12", "path": ["1582967358914"], "permalink_uri": "https://meral.edu.mm/records/9369", "pubdate": {"attribute_name": "Deposit date", "attribute_value": "2024-03-18"}, "publish_date": "2024-03-18", "publish_status": "0", "recid": "9369", "relation": {}, "relation_version_is_last": true, "title": ["A Comparative Study of Recent Trends in Big Data"], "weko_shared_id": -1}

A Comparative Study of Recent Trends in Big Data

https://meral.edu.mm/records/9369
7378f00d-f4dd-4764-9829-829d0b67e00a
36bb5a6d-9117-4be0-b98e-c32aa064d00c
None
Name / File License Actions
Pwint Pwint Phyu Khine (387 to 398).pdf (689 KB)
Publication type
Journal article
Upload type
Publication
Title
Title A Comparative Study of Recent Trends in Big Data
Language en
Publication date 2022-12-31
Authors
Pwint Phyu Khine
San Myint Tin
Soe Mya Mya Aye
Description
It was estimated that there will be 181 zeta bytes of data in 2025 terming big data. The unexpected occurrence of Covid-19 makes data volume consumed skyrocket making understanding and manipulating such an amount of big data to extract valuable information become a necessary challenge. Data becomes new oil. Challenges for these big data make great changes in the data landscape leading to recent trends in big data. The main prominent trends are the ideology of polyglot persistence to use different data stores with different characteristics in single application, the revisiting of data warehouse concepts and emergence of data, and the choice of machine learning algorithms or ML algorithm to be revisited due to Big Data V characteristics.
Keywords
Big data, Big data characteristics, NoSQL data stores, polyglot persistence, Data Lake
Journal articles
2022
University of Yangon Research Journal
387-398
11, No. 1
0
0
views
downloads
Views Downloads

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats