-
RootNode
Item
{"_buckets": {"deposit": "6b98858b-b191-431f-b0c2-14d80f4285e0"}, "_deposit": {"created_by": 232, "id": "9269", "owner": "232", "owners": [232], "owners_ext": {"displayname": "", "username": ""}, "pid": {"revision_id": 0, "type": "depid", "value": "9269"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/00009269", "sets": ["1704444930107", "1704332280616"]}, "author_link": [], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Comparison of Finite Difference Methods on One Dimensional Heat Equation", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Numerical techniques are powerful tools for solving the partial differential equations. A few problems can be solved analytically as well as difficult boundary value problems can be solved by numerical methods easily. A numerical method known as finite difference methods (explicit, fully implicit and Crank-Nicolson schemes) is applied for solving the heat equations successfully. In this paper, the solutions of finite difference methods are presented in tables together with figures comparing the analytical solution."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Finite difference methods"}, {"interim": "Local truncation error"}, {"interim": "boundary condition"}, {"interim": "stability and convergence"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2024-01-26"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Dr Swe Zin Nwe(2022 journal).pdf", "filesize": [{"value": "272 KB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_0", "mimetype": "application/pdf", "size": 272000.0, "url": {"url": "https://meral.edu.mm/record/9269/files/Dr Swe Zin Nwe(2022 journal).pdf"}, "version_id": "b5ec767a-d53b-4710-b881-aed0bc1067e9"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "1", "subitem_journal_title": "Yadanabon University Research Journal", "subitem_volume": "12"}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Swe Zin Nwe"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Journal article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2022-08-01"}, "item_title": "Comparison of Finite Difference Methods on One Dimensional Heat Equation", "item_type_id": "21", "owner": "232", "path": ["1704332280616", "1704444930107"], "permalink_uri": "https://meral.edu.mm/records/9269", "pubdate": {"attribute_name": "Deposit date", "attribute_value": "2024-01-27"}, "publish_date": "2024-01-27", "publish_status": "0", "recid": "9269", "relation": {}, "relation_version_is_last": true, "title": ["Comparison of Finite Difference Methods on One Dimensional Heat Equation"], "weko_shared_id": -1}
Comparison of Finite Difference Methods on One Dimensional Heat Equation
https://meral.edu.mm/records/9269
https://meral.edu.mm/records/9269311a92fb-5b78-418f-bda8-37b8acfef612
6b98858b-b191-431f-b0c2-14d80f4285e0
Name / File | License | Actions |
---|---|---|
![]() |
Publication type | ||||||
---|---|---|---|---|---|---|
Journal article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Comparison of Finite Difference Methods on One Dimensional Heat Equation | |||||
Language | en | |||||
Publication date | 2022-08-01 | |||||
Authors | ||||||
Swe Zin Nwe | ||||||
Description | ||||||
Numerical techniques are powerful tools for solving the partial differential equations. A few problems can be solved analytically as well as difficult boundary value problems can be solved by numerical methods easily. A numerical method known as finite difference methods (explicit, fully implicit and Crank-Nicolson schemes) is applied for solving the heat equations successfully. In this paper, the solutions of finite difference methods are presented in tables together with figures comparing the analytical solution. | ||||||
Keywords | ||||||
Finite difference methods, Local truncation error, boundary condition, stability and convergence | ||||||
Journal articles | ||||||
1 | ||||||
Yadanabon University Research Journal | ||||||
12 |