Index Link

  • RootNode

Item

{"_buckets": {"deposit": "6b98858b-b191-431f-b0c2-14d80f4285e0"}, "_deposit": {"created_by": 232, "id": "9269", "owner": "232", "owners": [232], "owners_ext": {"displayname": "", "username": ""}, "pid": {"revision_id": 0, "type": "depid", "value": "9269"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/00009269", "sets": ["1704444930107", "1704332280616"]}, "author_link": [], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Comparison of Finite Difference Methods on One Dimensional Heat Equation", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Numerical techniques are powerful tools for solving the partial differential equations. A few problems can be solved analytically as well as difficult boundary value problems can be solved by numerical methods easily. A numerical method known as finite difference methods (explicit, fully implicit and Crank-Nicolson schemes) is applied for solving the heat equations successfully. In this paper, the solutions of finite difference methods are presented in tables together with figures comparing the analytical solution."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Finite difference methods"}, {"interim": "Local truncation error"}, {"interim": "boundary condition"}, {"interim": "stability and convergence"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2024-01-26"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Dr Swe Zin Nwe(2022 journal).pdf", "filesize": [{"value": "272 KB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_0", "mimetype": "application/pdf", "size": 272000.0, "url": {"url": "https://meral.edu.mm/record/9269/files/Dr Swe Zin Nwe(2022 journal).pdf"}, "version_id": "b5ec767a-d53b-4710-b881-aed0bc1067e9"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "1", "subitem_journal_title": "Yadanabon University Research Journal", "subitem_volume": "12"}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Swe Zin Nwe"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Journal article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2022-08-01"}, "item_title": "Comparison of Finite Difference Methods on One Dimensional Heat Equation", "item_type_id": "21", "owner": "232", "path": ["1704332280616", "1704444930107"], "permalink_uri": "https://meral.edu.mm/records/9269", "pubdate": {"attribute_name": "Deposit date", "attribute_value": "2024-01-27"}, "publish_date": "2024-01-27", "publish_status": "0", "recid": "9269", "relation": {}, "relation_version_is_last": true, "title": ["Comparison of Finite Difference Methods on One Dimensional Heat Equation"], "weko_shared_id": -1}

Comparison of Finite Difference Methods on One Dimensional Heat Equation

https://meral.edu.mm/records/9269
311a92fb-5b78-418f-bda8-37b8acfef612
6b98858b-b191-431f-b0c2-14d80f4285e0
None
Name / File License Actions
Dr Dr Swe Zin Nwe(2022 journal).pdf (272 KB)
Publication type
Journal article
Upload type
Publication
Title
Title Comparison of Finite Difference Methods on One Dimensional Heat Equation
Language en
Publication date 2022-08-01
Authors
Swe Zin Nwe
Description
Numerical techniques are powerful tools for solving the partial differential equations. A few problems can be solved analytically as well as difficult boundary value problems can be solved by numerical methods easily. A numerical method known as finite difference methods (explicit, fully implicit and Crank-Nicolson schemes) is applied for solving the heat equations successfully. In this paper, the solutions of finite difference methods are presented in tables together with figures comparing the analytical solution.
Keywords
Finite difference methods, Local truncation error, boundary condition, stability and convergence
Journal articles
1
Yadanabon University Research Journal
12
0
0
views
downloads
Views Downloads

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats