Index Link

  • RootNode

Item

{"_buckets": {"deposit": "18069f13-56ed-4c28-af9a-0dba060c13e1"}, "_deposit": {"created_by": 20, "id": "8471", "owner": "20", "owners": [20], "owners_ext": {"displayname": "", "username": ""}, "pid": {"revision_id": 0, "type": "depid", "value": "8471"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/00008471", "sets": ["1707206634013"]}, "author_link": [], "control_number": "8471", "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "The Violation for assumptions of multiple regression model (Ma May Thu, 2019)", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "The study intends to apply some of the most common and appropriate detections and remedies methods to meet the assumptions of a multiple linear regression model. When the assumptions are violated, then the inferences about the parameter estimate will be incorrect. The secondary data for maize (1998-2018), wheat (1998-2018), rice (1966-2018) and sesame (1989-2018) of Myanmar. Maize data for linearity assumption is used to detect and remedy. Wheat data for normality assumption is used to apply in the detection and remedial ways. Rice data for homoscedasticity assumption is used and sesame data for micronumerosity assumption, multicollinearity assumption, and the nature of independent variables assumption, autocorrelation assumption are used to diagnosis and resolving ways."}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2022-12-10"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "May Thu, MEcon. Stats. Roll.4.pdf", "filesize": [{"value": "1.2 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_0", "mimetype": "application/pdf", "size": 1200000.0, "url": {"url": "https://meral.edu.mm/record/8471/files/May Thu, MEcon. Stats. Roll.4.pdf"}, "version_id": "fa58b1af-33a0-42b2-89f9-a1f501d742df"}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "Yangon University of Economics", "subitem_supervisor(s)": [{"subitem_supervisor": "Daw Saw Nan Swe"}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "May Thu"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Other"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Thesis"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2019-11-01"}, "item_title": "The Violation for assumptions of multiple regression model (Ma May Thu, 2019)", "item_type_id": "21", "owner": "20", "path": ["1707206634013"], "permalink_uri": "https://meral.edu.mm/records/8471", "pubdate": {"attribute_name": "Deposit date", "attribute_value": "2022-12-10"}, "publish_date": "2022-12-10", "publish_status": "0", "recid": "8471", "relation": {}, "relation_version_is_last": true, "title": ["The Violation for assumptions of multiple regression model (Ma May Thu, 2019)"], "weko_shared_id": -1}

The Violation for assumptions of multiple regression model (Ma May Thu, 2019)

https://meral.edu.mm/records/8471
beabaacc-774b-407a-af6c-874809466635
18069f13-56ed-4c28-af9a-0dba060c13e1
None
Name / File License Actions
May May Thu, MEcon. Stats. Roll.4.pdf (1.2 MB)
Publication type
Thesis
Upload type
Other
Title
Title The Violation for assumptions of multiple regression model (Ma May Thu, 2019)
Language en
Publication date 2019-11-01
Authors
May Thu
Description
The study intends to apply some of the most common and appropriate detections and remedies methods to meet the assumptions of a multiple linear regression model. When the assumptions are violated, then the inferences about the parameter estimate will be incorrect. The secondary data for maize (1998-2018), wheat (1998-2018), rice (1966-2018) and sesame (1989-2018) of Myanmar. Maize data for linearity assumption is used to detect and remedy. Wheat data for normality assumption is used to apply in the detection and remedial ways. Rice data for homoscedasticity assumption is used and sesame data for micronumerosity assumption, multicollinearity assumption, and the nature of independent variables assumption, autocorrelation assumption are used to diagnosis and resolving ways.
Thesis/dissertations
Yangon University of Economics
Daw Saw Nan Swe
0
0
views
downloads
Views Downloads

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats