MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "09b5431f-f5da-48ef-b654-2adc15eeaece"}, "_deposit": {"created_by": 228, "id": "8433", "owner": "228", "owners": [228], "owners_ext": {"displayname": "", "username": ""}, "pid": {"revision_id": 0, "type": "depid", "value": "8433"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/00008433"}, "author_link": [], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "\"Comparison of Finite Difference Methods on One Dimensional Heat Equation\"", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "\"Numerical techniques are powerful tools for solving the partial differential equations. A few\nproblems can be solved analytically as well as difficult boundary value problems can be\nsolved by numerical methods easily. A numerical method known as finite difference\nmethods (explicit, fully implicit and Crank-Nicolson schemes) is applied for solving the heat\nequations successfully. In this paper, the solutions of finite difference methods are\npresented in tables together with figures comparing the analytical solution.\""}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "\"Finite difference methods"}, {"interim": "Local truncation error"}, {"interim": "boundary condition"}, {"interim": "stability and convergence. 1\""}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2022-12-02"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Swe Zin Nwe.pdf", "filesize": [{"value": "420 KB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_0", "mimetype": "application/pdf", "size": 420000.0, "url": {"url": "https://meral.edu.mm/record/8433/files/Swe Zin Nwe.pdf"}, "version_id": "1176169a-24e6-4b2b-b4b7-3f6265e6c29e"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "2022", "subitem_journal_title": "Yadanabon University Research Journal", "subitem_pages": "330-336", "subitem_volume": "Vol.12, No.1"}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Swe Zin New"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Journal article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2022-08-12"}, "item_title": "\"Comparison of Finite Difference Methods on One Dimensional Heat Equation\"", "item_type_id": "21", "owner": "228", "path": ["1582966516414"], "permalink_uri": "https://meral.edu.mm/records/8433", "pubdate": {"attribute_name": "Deposit date", "attribute_value": "2022-12-02"}, "publish_date": "2022-12-02", "publish_status": "0", "recid": "8433", "relation": {}, "relation_version_is_last": true, "title": ["\"Comparison of Finite Difference Methods on One Dimensional Heat Equation\""], "weko_shared_id": -1}
"Comparison of Finite Difference Methods on One Dimensional Heat Equation"
https://meral.edu.mm/records/8433
https://meral.edu.mm/records/8433dbf55fc1-2784-4077-a4a8-1cf00bff8660
09b5431f-f5da-48ef-b654-2adc15eeaece
Name / File | License | Actions |
---|---|---|
Swe Zin Nwe.pdf (420 KB)
|
Publication type | ||||||
---|---|---|---|---|---|---|
Journal article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | "Comparison of Finite Difference Methods on One Dimensional Heat Equation" | |||||
Language | en | |||||
Publication date | 2022-08-12 | |||||
Authors | ||||||
Swe Zin New | ||||||
Description | ||||||
"Numerical techniques are powerful tools for solving the partial differential equations. A few problems can be solved analytically as well as difficult boundary value problems can be solved by numerical methods easily. A numerical method known as finite difference methods (explicit, fully implicit and Crank-Nicolson schemes) is applied for solving the heat equations successfully. In this paper, the solutions of finite difference methods are presented in tables together with figures comparing the analytical solution." |
||||||
Keywords | ||||||
"Finite difference methods, Local truncation error, boundary condition, stability and convergence. 1" | ||||||
Journal articles | ||||||
2022 | ||||||
Yadanabon University Research Journal | ||||||
330-336 | ||||||
Vol.12, No.1 |