MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "5019834a-da2f-4c7f-9df9-b190e866c57a"}, "_deposit": {"created_by": 73, "id": "7751", "owner": "73", "owners": [73], "owners_ext": {"displayname": "", "username": ""}, "pid": {"revision_id": 0, "type": "depid", "value": "7751"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/00007751", "sets": ["user-miit"]}, "communities": ["miit"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Lung Cancer Stages Detection and Classification on CT Scan Images using Artificial Neural Network", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "The fundamental to the diagnosis of lung cancer in CT scans is the detection and interpretation of lung cancer nodules. Image processing techniques are widely used in many medical areas for improving earlier detection and treatment stages. This paper presents an approach for lung cancer nodule detection and stage classification on CT Scan Images. The objective of using morphological operations is to remove the imperfections in the structure of image. In this paper, morphological operations are used to detect lung cancer nodule. And then, extracts low-level features from the detected nodule. This paper uses seven features area, perimeter, eccentricity and four texture features using Gray-level Co-occurrence Matrix (GLCM). Finally, the extracted features from the detected regions are given as input to 3-layer Artificial Neural Network (ANN) classifier to classify the detected lung cancer nodule into stages. Diagnosis is mostly based on CT (computed tomography) images. The lung cancer CT scan images for each stage obtain from the internet."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Morphological Operations, Gray-level Co-occurrence Matrix, Artificial Neural Network"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2021-01-23"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Lung Cancer Stages Detection and Classification on CT Scan Images using Artificial Neural Network.jpg", "filesize": [{"value": "3.7 MB"}], "format": "image/jpeg", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_3", "mimetype": "image/jpeg", "size": 3700000.0, "url": {"url": "https://meral.edu.mm/record/7751/files/Lung Cancer Stages Detection and Classification on CT Scan Images using Artificial Neural Network.jpg"}, "version_id": "506b76bb-e8fb-4ccb-bc49-888581443494"}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "ICBDL", "subitem_c_date": "2018-05-07", "subitem_conference_title": "First International Conference on Big Data Analysis and Deep Learning Applications , ICBDL, Japan", "subitem_part": "8", "subitem_place": "Miyazaki, Japan", "subitem_session": "8", "subitem_website": "http://www.miyazaki-u.ac.jp/english/"}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Kyawt Kyawt Htay"}, {"subitem_authors_fullname": "Nweni Kyaw"}, {"subitem_authors_fullname": "Phyo Hay Mar Wai"}, {"subitem_authors_fullname": "Hanni Htun"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Conference paper"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2018-05-07"}, "item_title": "Lung Cancer Stages Detection and Classification on CT Scan Images using Artificial Neural Network", "item_type_id": "21", "owner": "73", "path": ["1582963674932", "1597396989070"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000007751", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2018-05-07"}, "publish_date": "2018-05-07", "publish_status": "0", "recid": "7751", "relation": {}, "relation_version_is_last": true, "title": ["Lung Cancer Stages Detection and Classification on CT Scan Images using Artificial Neural Network"], "weko_shared_id": -1}
Lung Cancer Stages Detection and Classification on CT Scan Images using Artificial Neural Network
http://hdl.handle.net/20.500.12678/0000007751
http://hdl.handle.net/20.500.12678/00000077513f92c09f-24eb-41e2-9170-39373fb80274
5019834a-da2f-4c7f-9df9-b190e866c57a
Name / File | License | Actions |
---|---|---|
Lung Cancer Stages Detection and Classification on CT Scan Images using Artificial Neural Network.jpg (3.7 MB)
|
Publication type | ||||||
---|---|---|---|---|---|---|
Conference paper | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Lung Cancer Stages Detection and Classification on CT Scan Images using Artificial Neural Network | |||||
Language | en | |||||
Publication date | 2018-05-07 | |||||
Authors | ||||||
Kyawt Kyawt Htay | ||||||
Nweni Kyaw | ||||||
Phyo Hay Mar Wai | ||||||
Hanni Htun | ||||||
Description | ||||||
The fundamental to the diagnosis of lung cancer in CT scans is the detection and interpretation of lung cancer nodules. Image processing techniques are widely used in many medical areas for improving earlier detection and treatment stages. This paper presents an approach for lung cancer nodule detection and stage classification on CT Scan Images. The objective of using morphological operations is to remove the imperfections in the structure of image. In this paper, morphological operations are used to detect lung cancer nodule. And then, extracts low-level features from the detected nodule. This paper uses seven features area, perimeter, eccentricity and four texture features using Gray-level Co-occurrence Matrix (GLCM). Finally, the extracted features from the detected regions are given as input to 3-layer Artificial Neural Network (ANN) classifier to classify the detected lung cancer nodule into stages. Diagnosis is mostly based on CT (computed tomography) images. The lung cancer CT scan images for each stage obtain from the internet. | ||||||
Keywords | ||||||
Morphological Operations, Gray-level Co-occurrence Matrix, Artificial Neural Network | ||||||
Conference papers | ||||||
ICBDL | ||||||
2018-05-07 | ||||||
First International Conference on Big Data Analysis and Deep Learning Applications , ICBDL, Japan | ||||||
8 | ||||||
Miyazaki, Japan | ||||||
8 | ||||||
http://www.miyazaki-u.ac.jp/english/ |