MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "9c65aa56-2ba6-4dc0-aa92-7175cb8aa711"}, "_deposit": {"id": "771", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "771"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/771", "sets": ["1582967046255", "user-um"]}, "communities": ["um"], "control_number": "771", "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Local instability of a rotating flow driven by precession of arbitrary frequency", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "We revisit the local stability, to three-dimensional disturbances, of rotating flows with circular streamlines, whose rotation axis executes constant precessional motion about an axis perpendicular to itself. In the rotating frame, the basic flow is steady velocity field linear in coordinates in an unbounded domain constructed by Kerswell (1993Geophys. Astrophys. Fluid Dyn.72 107–44), and admits the use of the Wentzel–Kramers–Brillouin (WKB) method. For a small precession frequency, we recover Kerswell’s result. A novel instability is found at a large frequency for which the axial wavenumber executes an oscillation around zero; significant growth of the disturbance amplitude occurs in a very short time interval only around the time when the axial wavenumber vanishes. In the limit of infinite precession frequency, the growth rate exhibits singular behavior with respect to a parameter characterizing the tilting angle of the wave vector. (Some figures in this article are in colour only in the electronic version)"}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Local Stability"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_journal_title": "Fluid Dynamics Research"}]}, "item_1583103147082": {"attribute_name": "Conference papaers", "attribute_value_mlt": [{}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_supervisor(s)": []}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Me Me Naing"}, {"subitem_authors_fullname": "Fukumoto, Yasuhide"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Journal article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2011"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "https://umoar.mu.edu.mm/handle/123456789/278"}, "item_title": "Local instability of a rotating flow driven by precession of arbitrary frequency", "item_type_id": "21", "owner": "1", "path": ["1582967046255"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000000771", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2020-03-05"}, "publish_date": "2020-03-05", "publish_status": "0", "recid": "771", "relation": {}, "relation_version_is_last": true, "title": ["Local instability of a rotating flow driven by precession of arbitrary frequency"], "weko_shared_id": -1}
Local instability of a rotating flow driven by precession of arbitrary frequency
http://hdl.handle.net/20.500.12678/0000000771
http://hdl.handle.net/20.500.12678/000000077130e5fea3-d3f0-4046-aaa6-f8fa5f0dcaef
9c65aa56-2ba6-4dc0-aa92-7175cb8aa711
Publication type | ||||||
---|---|---|---|---|---|---|
Journal article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Local instability of a rotating flow driven by precession of arbitrary frequency | |||||
Language | en | |||||
Publication date | 2011 | |||||
Authors | ||||||
Me Me Naing | ||||||
Fukumoto, Yasuhide | ||||||
Description | ||||||
We revisit the local stability, to three-dimensional disturbances, of rotating flows with circular streamlines, whose rotation axis executes constant precessional motion about an axis perpendicular to itself. In the rotating frame, the basic flow is steady velocity field linear in coordinates in an unbounded domain constructed by Kerswell (1993Geophys. Astrophys. Fluid Dyn.72 107–44), and admits the use of the Wentzel–Kramers–Brillouin (WKB) method. For a small precession frequency, we recover Kerswell’s result. A novel instability is found at a large frequency for which the axial wavenumber executes an oscillation around zero; significant growth of the disturbance amplitude occurs in a very short time interval only around the time when the axial wavenumber vanishes. In the limit of infinite precession frequency, the growth rate exhibits singular behavior with respect to a parameter characterizing the tilting angle of the wave vector. (Some figures in this article are in colour only in the electronic version) | ||||||
Keywords | ||||||
Local Stability | ||||||
Identifier | https://umoar.mu.edu.mm/handle/123456789/278 | |||||
Journal articles | ||||||
Fluid Dynamics Research | ||||||
Conference papaers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |