Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking


Index Link

Index Tree

  • RootNode

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "35068754-8b0e-4566-8d58-6d53c09b3fe0"}, "_deposit": {"created_by": 92, "id": "7707", "owner": "92", "owners": [92], "owners_ext": {"displayname": "", "username": ""}, "pid": {"revision_id": 0, "type": "depid", "value": "7707"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/00007707", "sets": ["user-miit"]}, "communities": ["miit"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Myanmar Rice Grain Classification Using Image Processing Techniques", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "\"The classification of various varieties of rice grains is made by using image processing\ntechniques and algorithms. Five types of rice grains in Myanmar such as Paw\nSan Hmwe, Lone Thwe Hmwe, Ayeyarmin, Kauk-Nyinn-Thwe and\nKauk-Nyinn-Pu are considered for present study in classifying the rice seeds and\nquality. Firstly, each grain image is preprocessed to enhance the grain image and\nthen segmented by using the edge detection methods such as threshold method.\nFive morphological features are extracted from each grain image. This system\nemphasizes on the development a computer vision-based system that is combined with proper heuristic algorithms for automatic classification of Myanmar’s\nrice grain samples.\""}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Image Processing"}, {"interim": "Enhancement"}, {"interim": "Segmentation"}, {"interim": "Classification"}, {"interim": "Rice grain"}, {"interim": "Myanmar"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2021-01-21"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Myanmar Rice Grain Classification by using Image Processing.pdf", "filesize": [{"value": "191 KB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_0", "mimetype": "application/pdf", "size": 191000.0, "url": {"url": "https://meral.edu.mm/record/7707/files/Myanmar Rice Grain Classification by using Image Processing.pdf"}, "version_id": "fdadaa3e-c3ba-461d-9bab-6a4043fc4648"}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "ICBDL 2018", "subitem_c_date": "14-15-May-2018", "subitem_conference_title": "First International Conference on Big Data Analysis and Deep Learning (ICBDL 2018)/ Springer Journal", "subitem_part": "pg-41", "subitem_place": "Japan", "subitem_session": "Image and Multimedia Processing I", "subitem_website": "(https://link.springer.com/chapter/10.1007/978-981-13-0869-7_36)"}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Mie Mie Tin"}, {"subitem_authors_fullname": "Khin Lay Mon"}, {"subitem_authors_fullname": "Ei Phyu Win"}, {"subitem_authors_fullname": "Su Su Hlaing"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Conference paper"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2018-05-15"}, "item_title": "Myanmar Rice Grain Classification Using Image Processing Techniques", "item_type_id": "21", "owner": "92", "path": ["1582963674932", "1597397014014"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000007707", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2021-01-21"}, "publish_date": "2021-01-21", "publish_status": "0", "recid": "7707", "relation": {}, "relation_version_is_last": true, "title": ["Myanmar Rice Grain Classification Using Image Processing Techniques"], "weko_shared_id": -1}
  1. Myanmar Institute of Information Technology
  1. Myanmar Institute of Information Technology
  2. Faculty of Computer System and Technology

Myanmar Rice Grain Classification Using Image Processing Techniques

http://hdl.handle.net/20.500.12678/0000007707
http://hdl.handle.net/20.500.12678/0000007707
86e7abf9-49f7-4b71-8071-1ab783d33c34
35068754-8b0e-4566-8d58-6d53c09b3fe0
None
Preview
Name / File License Actions
Myanmar Myanmar Rice Grain Classification by using Image Processing.pdf (191 KB)
license.icon
Publication type
Conference paper
Upload type
Publication
Title
Title Myanmar Rice Grain Classification Using Image Processing Techniques
Language en
Publication date 2018-05-15
Authors
Mie Mie Tin
Khin Lay Mon
Ei Phyu Win
Su Su Hlaing
Description
"The classification of various varieties of rice grains is made by using image processing
techniques and algorithms. Five types of rice grains in Myanmar such as Paw
San Hmwe, Lone Thwe Hmwe, Ayeyarmin, Kauk-Nyinn-Thwe and
Kauk-Nyinn-Pu are considered for present study in classifying the rice seeds and
quality. Firstly, each grain image is preprocessed to enhance the grain image and
then segmented by using the edge detection methods such as threshold method.
Five morphological features are extracted from each grain image. This system
emphasizes on the development a computer vision-based system that is combined with proper heuristic algorithms for automatic classification of Myanmar’s
rice grain samples."
Keywords
Image Processing, Enhancement, Segmentation, Classification, Rice grain, Myanmar
Conference papers
ICBDL 2018
14-15-May-2018
First International Conference on Big Data Analysis and Deep Learning (ICBDL 2018)/ Springer Journal
pg-41
Japan
Image and Multimedia Processing I
(https://link.springer.com/chapter/10.1007/978-981-13-0869-7_36)
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2021-01-21 08:26:45.750652
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL