MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "3636d41e-b0ed-45fd-b93c-ca928b4ee170"}, "_deposit": {"created_by": 20, "id": "6825", "owner": "20", "owners": [20], "owners_ext": {"displayname": "", "username": ""}, "pid": {"revision_id": 0, "type": "depid", "value": "6825"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/00006825", "sets": ["1582963436320", "user-yueco", "1582965639643"]}, "communities": ["yueco"], "control_number": "6825", "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "OUTLIERS AND THEIR EFFECT ON PARAMETERS ESTIMATIONS IN REGRESSION ANALYSIS", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "This study attempts to investigate the effect of outliers on estimation of parameters in regression analysis.The results about outlier robustness point out that the robust and classical methods both worked well data with no outliers indicating that their mean squares error (MSE) are quite close to each other. If there are outliers in the data, the robust methods perform better than the classical method. The OLS estimates provide poor estimates of true parameters of the regression model. As expected, OLS is a less efficient estimator whatever the type of outliers present in the data."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "RobustEstimators"}, {"interim": "Maximum Likelihood"}, {"interim": "Additive Outlier"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2020-12-17"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Dr. Maw Maw Khin.pdf", "filesize": [{"value": "423 KB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_0", "mimetype": "application/pdf", "size": 423000.0, "url": {"url": "https://meral.edu.mm/record/6825/files/Dr. Maw Maw Khin.pdf"}, "version_id": "08fe5d85-7217-4b3a-a53e-c3cba379f46d"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_journal_title": "Yangon University of Economics Research Journal", "subitem_pages": "81-89", "subitem_volume": "vol.5, no.1"}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Maw Maw Khin"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Journal article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2018-02-01"}, "item_title": "OUTLIERS AND THEIR EFFECT ON PARAMETERS ESTIMATIONS IN REGRESSION ANALYSIS", "item_type_id": "21", "owner": "20", "path": ["1582963436320", "1582965639643"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000006825", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2020-12-15"}, "publish_date": "2020-12-15", "publish_status": "0", "recid": "6825", "relation": {}, "relation_version_is_last": true, "title": ["OUTLIERS AND THEIR EFFECT ON PARAMETERS ESTIMATIONS IN REGRESSION ANALYSIS"], "weko_shared_id": -1}
OUTLIERS AND THEIR EFFECT ON PARAMETERS ESTIMATIONS IN REGRESSION ANALYSIS
http://hdl.handle.net/20.500.12678/0000006825
http://hdl.handle.net/20.500.12678/00000068258c9682d2-da1a-41d6-baad-5190428a9d60
3636d41e-b0ed-45fd-b93c-ca928b4ee170
Name / File | License | Actions |
---|---|---|
Dr. Maw Maw Khin.pdf (423 KB)
|
Publication type | ||||||
---|---|---|---|---|---|---|
Journal article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | OUTLIERS AND THEIR EFFECT ON PARAMETERS ESTIMATIONS IN REGRESSION ANALYSIS | |||||
Language | en | |||||
Publication date | 2018-02-01 | |||||
Authors | ||||||
Maw Maw Khin | ||||||
Description | ||||||
This study attempts to investigate the effect of outliers on estimation of parameters in regression analysis.The results about outlier robustness point out that the robust and classical methods both worked well data with no outliers indicating that their mean squares error (MSE) are quite close to each other. If there are outliers in the data, the robust methods perform better than the classical method. The OLS estimates provide poor estimates of true parameters of the regression model. As expected, OLS is a less efficient estimator whatever the type of outliers present in the data. | ||||||
Keywords | ||||||
RobustEstimators, Maximum Likelihood, Additive Outlier | ||||||
Journal articles | ||||||
Yangon University of Economics Research Journal | ||||||
81-89 | ||||||
vol.5, no.1 |