MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "d940ce45-2ca0-4829-b619-8938da460972"}, "_deposit": {"created_by": 20, "id": "6825", "owner": "20", "owners": [20], "owners_ext": {"displayname": "", "username": ""}, "pid": {"revision_id": 0, "type": "depid", "value": "6825"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/00006825", "sets": ["1582965639643", "user-yueco", "1582963436320"]}, "author_link": [], "communities": ["yueco"], "control_number": "6825", "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "OUTLIERS AND THEIR EFFECT ON PARAMETERS ESTIMATIONS IN REGRESSION ANALYSIS (Maw Maw Khin, 2018)", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "This study attempts to investigate the effect of outliers on estimation of parameters in regression analysis.The results about outlier robustness point out that the robust and classical methods both worked well data with no outliers indicating that their mean squares error (MSE) are quite close to each other. If there are outliers in the data, the robust methods perform better than the classical method. The OLS estimates provide poor estimates of true parameters of the regression model. As expected, OLS is a less efficient estimator whatever the type of outliers present in the data."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "RobustEstimators"}, {"interim": "Maximum Likelihood"}, {"interim": "Additive Outlier"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2020-12-17"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Dr. Maw Maw Khin.pdf", "filesize": [{"value": "423 KB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_0", "mimetype": "application/pdf", "size": 423000.0, "url": {"url": "https://meral.edu.mm/record/6825/files/Dr. Maw Maw Khin.pdf"}, "version_id": "bfab3985-40bf-439e-809d-ef9395d47c7a"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_journal_title": "Yangon University of Economics Research Journal", "subitem_pages": "81-89", "subitem_volume": "vol.5, no.1"}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Maw Maw Khin"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Journal article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2018-02-01"}, "item_title": "OUTLIERS AND THEIR EFFECT ON PARAMETERS ESTIMATIONS IN REGRESSION ANALYSIS (Maw Maw Khin, 2018)", "item_type_id": "21", "owner": "20", "path": ["1582963436320", "1582965639643"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000006825", "pubdate": {"attribute_name": "Deposit date", "attribute_value": "2020-12-15"}, "publish_date": "2020-12-15", "publish_status": "0", "recid": "6825", "relation": {}, "relation_version_is_last": true, "title": ["OUTLIERS AND THEIR EFFECT ON PARAMETERS ESTIMATIONS IN REGRESSION ANALYSIS (Maw Maw Khin, 2018)"], "weko_shared_id": -1}
OUTLIERS AND THEIR EFFECT ON PARAMETERS ESTIMATIONS IN REGRESSION ANALYSIS (Maw Maw Khin, 2018)
http://hdl.handle.net/20.500.12678/0000006825
http://hdl.handle.net/20.500.12678/00000068258c9682d2-da1a-41d6-baad-5190428a9d60
d940ce45-2ca0-4829-b619-8938da460972
Name / File | License | Actions |
---|---|---|
![]() |
Publication type | ||||||
---|---|---|---|---|---|---|
Journal article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | OUTLIERS AND THEIR EFFECT ON PARAMETERS ESTIMATIONS IN REGRESSION ANALYSIS (Maw Maw Khin, 2018) | |||||
Language | en | |||||
Publication date | 2018-02-01 | |||||
Authors | ||||||
Maw Maw Khin | ||||||
Description | ||||||
This study attempts to investigate the effect of outliers on estimation of parameters in regression analysis.The results about outlier robustness point out that the robust and classical methods both worked well data with no outliers indicating that their mean squares error (MSE) are quite close to each other. If there are outliers in the data, the robust methods perform better than the classical method. The OLS estimates provide poor estimates of true parameters of the regression model. As expected, OLS is a less efficient estimator whatever the type of outliers present in the data. | ||||||
Keywords | ||||||
RobustEstimators, Maximum Likelihood, Additive Outlier | ||||||
Journal articles | ||||||
Yangon University of Economics Research Journal | ||||||
81-89 | ||||||
vol.5, no.1 |