MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "441d16da-0092-4a49-8661-65b4eeb6ffec"}, "_deposit": {"created_by": 45, "id": "6759", "owner": "45", "owners": [45], "owners_ext": {"displayname": "", "username": ""}, "pid": {"revision_id": 0, "type": "depid", "value": "6759"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/00006759", "sets": ["user-uit"]}, "communities": ["uit"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Extractive Summarization for Myanmar Language", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Due to increasing availability of online information, tools and mechanisms for automatic summarization of documents is needed. Text summarization is currently a major research topic in Natural Language Processing. There are various approaches to generate text summary. Among them, we proposed Myanmar text summarization using latent semantic analysis (LSA). Latent semantic analysis (LSA) is a technique in natural language processing,and can analyze relationships between a set of documents and the terms they contain by producing a set of concepts related to the documents and terms. It is an unsupervised approach which does not need any traning or external knowledge. There is no LSA based sentence extraction in Myanmar language. This is the first LSA based Text Summarizer in Myanmar. This paper present generic, extractve and single-document Myanmar text summarization using latent semantic analysis. This paper compare two sentence selection methods (Steinberger and Jezek\u0027s approach and Ozay approach) of latent semantic analysis to extract important sentences. We summarize Myanmar news from Myanmar official websites such as 7day daily, iyarwaddy, etc.,."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "LSA"}, {"interim": "text summarization"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_no", "date": [{"dateType": "Available", "dateValue": "2020-12-12"}], "displaytype": "preview", "filename": "Extractive Summarization for Myanmar Language.pdf", "filesize": [{"value": "514 Kb"}], "format": "application/pdf", "licensefree": "© IEEE", "licensetype": "license_free", "url": {"url": "https://meral.edu.mm/api/files/441d16da-0092-4a49-8661-65b4eeb6ffec/Extractive%20Summarization%20for%20Myanmar%20Language.pdf"}, "version_id": "1106b062-d53e-490a-a2e1-b328367aa546"}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "iSAI-NLP", "subitem_c_date": "November, 2018", "subitem_conference_title": "2018 International Joint Symposium on Artificial Intelligence and Natural Language Processing", "subitem_place": "Pattaya, Thailand", "subitem_website": "https://ieeexplore.ieee.org/document/8692976"}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Soe Soe Lwin"}, {"subitem_authors_fullname": "Khin Thandar Nwet"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Conference paper"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2018-11-01"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "10.1109/iSAI-NLP.2018.8692976"}, "item_title": "Extractive Summarization for Myanmar Language", "item_type_id": "21", "owner": "45", "path": ["1596102355557"], "permalink_uri": "https://meral.edu.mm/records/6759", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2020-12-12"}, "publish_date": "2020-12-12", "publish_status": "0", "recid": "6759", "relation": {}, "relation_version_is_last": true, "title": ["Extractive Summarization for Myanmar Language"], "weko_shared_id": -1}
Extractive Summarization for Myanmar Language
https://meral.edu.mm/records/6759
https://meral.edu.mm/records/6759bc01b59e-1583-4bf7-93fc-f37a5006d41e
441d16da-0092-4a49-8661-65b4eeb6ffec
Publication type | ||||||
---|---|---|---|---|---|---|
Conference paper | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Extractive Summarization for Myanmar Language | |||||
Language | en | |||||
Publication date | 2018-11-01 | |||||
Authors | ||||||
Soe Soe Lwin | ||||||
Khin Thandar Nwet | ||||||
Description | ||||||
Due to increasing availability of online information, tools and mechanisms for automatic summarization of documents is needed. Text summarization is currently a major research topic in Natural Language Processing. There are various approaches to generate text summary. Among them, we proposed Myanmar text summarization using latent semantic analysis (LSA). Latent semantic analysis (LSA) is a technique in natural language processing,and can analyze relationships between a set of documents and the terms they contain by producing a set of concepts related to the documents and terms. It is an unsupervised approach which does not need any traning or external knowledge. There is no LSA based sentence extraction in Myanmar language. This is the first LSA based Text Summarizer in Myanmar. This paper present generic, extractve and single-document Myanmar text summarization using latent semantic analysis. This paper compare two sentence selection methods (Steinberger and Jezek's approach and Ozay approach) of latent semantic analysis to extract important sentences. We summarize Myanmar news from Myanmar official websites such as 7day daily, iyarwaddy, etc.,. | ||||||
Keywords | ||||||
LSA, text summarization | ||||||
Identifier | 10.1109/iSAI-NLP.2018.8692976 | |||||
Conference papers | ||||||
iSAI-NLP | ||||||
November, 2018 | ||||||
2018 International Joint Symposium on Artificial Intelligence and Natural Language Processing | ||||||
Pattaya, Thailand | ||||||
https://ieeexplore.ieee.org/document/8692976 |