MERAL Myanmar Education Research and Learning Portal
AND
Item
{"_buckets": {"deposit": "52d44aa2-8375-407f-8eef-756db13e8ecd"}, "_deposit": {"id": "658", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "658"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/658"}, "control_number": "658", "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Propagation property for anisotropic nonlinear diffusion equation with convection", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "We consider propagation property for anisotropic diffusion equation with convection in\r 2 dimension,\r \u2202t\r \r um\r \r \u2212 \u2202x1\r \r |\u2202x1u|p1\u22121\u2202x1u\r \r \u2212 \u2202x2\r \r |\u2202x2u|p2\u22121\u2202x2u\r \r + u\u03b1\u22121\u2202x1u = 0,\r where p1, p2,m,\u03b1 \u003e 0. Among the results, we show that perturbation for the nonnegative\r solutions propagates with infinite speed in x1-direction and with finite speed in x2-\r direction if 0 \u003c \u03b1 \u003c m \u003c p2. We also show that the anisotropic propagation may appear\r when the convection term is weak, backward, or even missing, if 0 \u003c p1 m \u003c p2, p1 1."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Anisotropic nonlinear diffusion"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "354", "subitem_journal_title": "Journal of Mathematical Analysis and Applications"}]}, "item_1583103147082": {"attribute_name": "Conference papaers", "attribute_value_mlt": [{}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_supervisor(s)": []}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Than Sint Khin"}, {"subitem_authors_fullname": "Ning Su"}]}]}, "item_1583108359239": {"attribute_name": "Upload Type", "attribute_name_i18n": "Upload Type", "attribute_value": "Publication"}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_name_i18n": "Publication type", "attribute_value": "Journal article"}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_name_i18n": "Publication date", "attribute_value": "2009"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "https://umoar.mu.edu.mm/handle/123456789/276"}, "item_title": "Propagation property for anisotropic nonlinear diffusion equation with convection", "item_type_id": "21", "owner": "1", "path": ["1582963739756/1582967046255"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000000658", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2020-03-05"}, "publish_date": "2020-03-05", "publish_status": "0", "recid": "658", "relation": {}, "relation_version_is_last": true, "title": ["Propagation property for anisotropic nonlinear diffusion equation with convection"], "weko_shared_id": -1}
Propagation property for anisotropic nonlinear diffusion equation with convection
http://hdl.handle.net/20.500.12678/0000000658
56d922db-d4fd-4ee7-9858-ba20a65ebd7f
52d44aa2-8375-407f-8eef-756db13e8ecd
Publication type | Journal article | |||||
---|---|---|---|---|---|---|
Upload Type | Publication | |||||
Title | ||||||
Propagation property for anisotropic nonlinear diffusion equation with convection | ||||||
en | ||||||
Publication date | 2009 | |||||
Authors | ||||||
Than Sint Khin | ||||||
Ning Su | ||||||
Description | ||||||
We consider propagation property for anisotropic diffusion equation with convection in 2 dimension, ∂t um − ∂x1 |∂x1u|p1−1∂x1u − ∂x2 |∂x2u|p2−1∂x2u + uα−1∂x1u = 0, where p1, p2,m,α > 0. Among the results, we show that perturbation for the nonnegative solutions propagates with infinite speed in x1-direction and with finite speed in x2- direction if 0 < α < m < p2. We also show that the anisotropic propagation may appear when the convection term is weak, backward, or even missing, if 0 < p1 m < p2, p1 1. |
||||||
Keywords | ||||||
Anisotropic nonlinear diffusion | ||||||
Journal articles | ||||||
354 | ||||||
Journal of Mathematical Analysis and Applications | ||||||
Conference papaers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |