MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "86efd5b4-f4d6-44d8-bbc8-79f1ab81e27c"}, "_deposit": {"created_by": 45, "id": "6324", "owner": "45", "owners": [45], "owners_ext": {"displayname": "", "username": ""}, "pid": {"revision_id": 0, "type": "recid", "value": "6324"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/6324", "sets": ["user-uit"]}, "communities": ["uit"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Object-based Urban Land Use Classification using Deep Belief Network", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Urban land use information is very important for urban\nplanning, regional administration and management.\nClassification of urban land use from high resolution\nimages remains a challenging task, due to the extreme\ndifficulties in differentiating complex spatial patterns to\nderive high-level semantic labels. Deep learning is a\npowerful state-of-the-art technique for image processing\nincluding remote sensing images. The Deep Belief\nNetworks (DBN) model is a widely investigated and\ndeployed deep learning architecture. It combines the\nadvantages of unsupervised and supervised learning and\ncan archive good classification performance. In this\npaper, deep belief network model is used to improve the\nperformance of object-based land use classification.\nFirst, to achieve an object-based image representation,\nthe original image is segmented into objects by graphbased\nminimal-spanning-tree segmentation algorithm.\nSecond, spectral, spatial and texture features for each\nobject are extracted. Then all features are put into deep\nbelief network and the parameters of the network using\ntraining samples are trained. Finally, all objects are\nclassified by network."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Classification"}, {"interim": "Deep Belief Network"}, {"interim": "Land Use"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2020-11-20"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Object-based Urban Land Use Classification using Deep Belief Network.pdf", "filesize": [{"value": "1.4 Mb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensefree": "© 2018 ICAIT", "licensetype": "license_free", "mimetype": "application/pdf", "size": 1400000.0, "url": {"url": "https://meral.edu.mm/record/6324/files/Object-based Urban Land Use Classification using Deep Belief Network.pdf"}, "version_id": "2c2a1150-d026-4ec8-8f6c-caaf2ed9fc2f"}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "ICAIT-2018", "subitem_c_date": "1-2 November, 2018", "subitem_conference_title": "2nd International Conference on Advanced Information Technologies", "subitem_place": "Yangon, Myanmar", "subitem_session": "Image Processing", "subitem_website": "https://www.uit.edu.mm/icait-2018/"}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Su Wai Tun"}, {"subitem_authors_fullname": "Khin Mo Mo Tun"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Conference paper"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2018-11-02"}, "item_title": "Object-based Urban Land Use Classification using Deep Belief Network", "item_type_id": "21", "owner": "45", "path": ["1605779935331"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000006324", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2020-11-20"}, "publish_date": "2020-11-20", "publish_status": "0", "recid": "6324", "relation": {}, "relation_version_is_last": true, "title": ["Object-based Urban Land Use Classification using Deep Belief Network"], "weko_shared_id": -1}
Object-based Urban Land Use Classification using Deep Belief Network
http://hdl.handle.net/20.500.12678/0000006324
http://hdl.handle.net/20.500.12678/0000006324bb313775-574c-40f1-8317-2c6b02b72330
86efd5b4-f4d6-44d8-bbc8-79f1ab81e27c
Name / File | License | Actions |
---|---|---|
![]() |
© 2018 ICAIT
|
Publication type | ||||||
---|---|---|---|---|---|---|
Conference paper | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Object-based Urban Land Use Classification using Deep Belief Network | |||||
Language | en | |||||
Publication date | 2018-11-02 | |||||
Authors | ||||||
Su Wai Tun | ||||||
Khin Mo Mo Tun | ||||||
Description | ||||||
Urban land use information is very important for urban planning, regional administration and management. Classification of urban land use from high resolution images remains a challenging task, due to the extreme difficulties in differentiating complex spatial patterns to derive high-level semantic labels. Deep learning is a powerful state-of-the-art technique for image processing including remote sensing images. The Deep Belief Networks (DBN) model is a widely investigated and deployed deep learning architecture. It combines the advantages of unsupervised and supervised learning and can archive good classification performance. In this paper, deep belief network model is used to improve the performance of object-based land use classification. First, to achieve an object-based image representation, the original image is segmented into objects by graphbased minimal-spanning-tree segmentation algorithm. Second, spectral, spatial and texture features for each object are extracted. Then all features are put into deep belief network and the parameters of the network using training samples are trained. Finally, all objects are classified by network. |
||||||
Keywords | ||||||
Classification, Deep Belief Network, Land Use | ||||||
Conference papers | ||||||
ICAIT-2018 | ||||||
1-2 November, 2018 | ||||||
2nd International Conference on Advanced Information Technologies | ||||||
Yangon, Myanmar | ||||||
Image Processing | ||||||
https://www.uit.edu.mm/icait-2018/ |