MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "cc2be837-704c-4e9b-ae0b-6bd38b316844"}, "_deposit": {"created_by": 45, "id": "6190", "owner": "45", "owners": [45], "owners_ext": {"displayname": "", "username": ""}, "pid": {"revision_id": 0, "type": "recid", "value": "6190"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/6190", "sets": ["user-uit"]}, "communities": ["uit"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Breast Cancer Classification with Weighted Decisoin Tree Approach", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Classification can be used as in the form of data\nanalysis that can be used to extract models describing the\nimportant data classes. Classification is the task to identify\nthe class labels for instances based on a set of features\n(attributes). This paper will present the traditional decision\ntree and weighted decision tree algorithms. In this study,\nC4.5 and CART decision tree algorithms are used to predict\nthe breast cancer. Naïve Bayesian theorem was used to\ncalculate the weight value to set the appropriate weights to\ndecision tree model. The research work focuses the\ncomparative analysis of weighted decision tree algorithms\nand traditional decision tree algorithms by using Breast\nCancer datasets."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Classification"}, {"interim": "Decision Tree"}, {"interim": "Naïve Bayesian"}, {"interim": "Weighted Decision Tree"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2020-11-17"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Breast Cancer Classification with Weighted Decisoin Tree Approach.pdf", "filesize": [{"value": "485 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_0", "mimetype": "application/pdf", "size": 485000.0, "url": {"url": "https://meral.edu.mm/record/6190/files/Breast Cancer Classification with Weighted Decisoin Tree Approach.pdf"}, "version_id": "a6e28a65-1397-4915-b841-be9df17b4541"}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "NCSE 2019", "subitem_c_date": "27-28 June, 2019", "subitem_conference_title": "NCSE", "subitem_place": "Yangon, Myanmar"}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Khin Thuzar Win"}, {"subitem_authors_fullname": "Aung Nway Oo"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Conference paper"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2019-06-03"}, "item_title": "Breast Cancer Classification with Weighted Decisoin Tree Approach", "item_type_id": "21", "owner": "45", "path": ["1596102355557"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000006190", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2020-11-17"}, "publish_date": "2020-11-17", "publish_status": "0", "recid": "6190", "relation": {}, "relation_version_is_last": true, "title": ["Breast Cancer Classification with Weighted Decisoin Tree Approach"], "weko_shared_id": -1}
Breast Cancer Classification with Weighted Decisoin Tree Approach
http://hdl.handle.net/20.500.12678/0000006190
http://hdl.handle.net/20.500.12678/0000006190a989c662-f9d9-42f0-bbda-a7d416a01687
cc2be837-704c-4e9b-ae0b-6bd38b316844
Name / File | License | Actions |
---|---|---|
![]() |
Publication type | ||||||
---|---|---|---|---|---|---|
Conference paper | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Breast Cancer Classification with Weighted Decisoin Tree Approach | |||||
Language | en | |||||
Publication date | 2019-06-03 | |||||
Authors | ||||||
Khin Thuzar Win | ||||||
Aung Nway Oo | ||||||
Description | ||||||
Classification can be used as in the form of data analysis that can be used to extract models describing the important data classes. Classification is the task to identify the class labels for instances based on a set of features (attributes). This paper will present the traditional decision tree and weighted decision tree algorithms. In this study, C4.5 and CART decision tree algorithms are used to predict the breast cancer. Naïve Bayesian theorem was used to calculate the weight value to set the appropriate weights to decision tree model. The research work focuses the comparative analysis of weighted decision tree algorithms and traditional decision tree algorithms by using Breast Cancer datasets. |
||||||
Keywords | ||||||
Classification, Decision Tree, Naïve Bayesian, Weighted Decision Tree | ||||||
Conference papers | ||||||
NCSE 2019 | ||||||
27-28 June, 2019 | ||||||
NCSE | ||||||
Yangon, Myanmar |