Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "84713a5e-0024-49bf-ae45-26e1f4567494"}, "_deposit": {"created_by": 45, "id": "6175", "owner": "45", "owners": [45], "owners_ext": {"displayname": "", "username": ""}, "pid": {"revision_id": 0, "type": "recid", "value": "6175"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/6175", "sets": ["user-uit"]}, "communities": ["uit"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Evaluation of Classification System Using Naïve Bayes Classifier and Feature Selection Algorithms", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "In machine learning, feature selection, also known as variable selection, attribute selection or variable subset selection, is the process of selecting a subset of relevant for use in model construction. The feature selection approach gives enhanced prediction and reduces the computation time. This paper presents the comparative analysis of Naïve Bayes (NB) classifier with using two feature selection approaches namely Principal Component Analysis (PCA) and Correlation-based Feature Subset Selection (CFS). The experimental results prove that feature selection based Naïve Bayes classifier achieve higher accuracy rate."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "feature selection"}, {"interim": "NB"}, {"interim": "PCA"}, {"interim": "CFS"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2020-11-14"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Evaluation of Classification System Using Naïve Bayes Classifier and Feature Selection Algorithms.pdf", "filesize": [{"value": "154 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "application/pdf", "size": 154000.0, "url": {"url": "https://meral.edu.mm/record/6175/files/Evaluation of Classification System Using Naïve Bayes Classifier and Feature Selection Algorithms.pdf"}, "version_id": "40c82271-8620-4623-8128-abd1f9a43ce1"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "VII", "subitem_journal_title": "International Journal of Management, Technology And Engineering", "subitem_pages": "400-404", "subitem_volume": "8"}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Aung Nway Oo"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Journal article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2018-07-02"}, "item_title": "Evaluation of Classification System Using Naïve Bayes Classifier and Feature Selection Algorithms", "item_type_id": "21", "owner": "45", "path": ["1596102355557"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000006175", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2020-11-14"}, "publish_date": "2020-11-14", "publish_status": "0", "recid": "6175", "relation": {}, "relation_version_is_last": true, "title": ["Evaluation of Classification System Using Naïve Bayes Classifier and Feature Selection Algorithms"], "weko_shared_id": -1}
  1. University of Information Technology
  2. Faculty of Computer Science

Evaluation of Classification System Using Naïve Bayes Classifier and Feature Selection Algorithms

http://hdl.handle.net/20.500.12678/0000006175
http://hdl.handle.net/20.500.12678/0000006175
9f699010-daa5-4b70-83da-4164762afa53
84713a5e-0024-49bf-ae45-26e1f4567494
None
Preview
Name / File License Actions
Evaluation Evaluation of Classification System Using Naïve Bayes Classifier and Feature Selection Algorithms.pdf (154 Kb)
Publication type
Journal article
Upload type
Publication
Title
Title Evaluation of Classification System Using Naïve Bayes Classifier and Feature Selection Algorithms
Language en
Publication date 2018-07-02
Authors
Aung Nway Oo
Description
In machine learning, feature selection, also known as variable selection, attribute selection or variable subset selection, is the process of selecting a subset of relevant for use in model construction. The feature selection approach gives enhanced prediction and reduces the computation time. This paper presents the comparative analysis of Naïve Bayes (NB) classifier with using two feature selection approaches namely Principal Component Analysis (PCA) and Correlation-based Feature Subset Selection (CFS). The experimental results prove that feature selection based Naïve Bayes classifier achieve higher accuracy rate.
Keywords
feature selection, NB, PCA, CFS
Journal articles
VII
International Journal of Management, Technology And Engineering
400-404
8
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-11-14 16:47:03.607294
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL