MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "84713a5e-0024-49bf-ae45-26e1f4567494"}, "_deposit": {"created_by": 45, "id": "6175", "owner": "45", "owners": [45], "owners_ext": {"displayname": "", "username": ""}, "pid": {"revision_id": 0, "type": "recid", "value": "6175"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/6175", "sets": ["user-uit"]}, "communities": ["uit"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Evaluation of Classification System Using Naïve Bayes Classifier and Feature Selection Algorithms", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "In machine learning, feature selection, also known as variable selection, attribute selection or variable subset selection, is the process of selecting a subset of relevant for use in model construction. The feature selection approach gives enhanced prediction and reduces the computation time. This paper presents the comparative analysis of Naïve Bayes (NB) classifier with using two feature selection approaches namely Principal Component Analysis (PCA) and Correlation-based Feature Subset Selection (CFS). The experimental results prove that feature selection based Naïve Bayes classifier achieve higher accuracy rate."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "feature selection"}, {"interim": "NB"}, {"interim": "PCA"}, {"interim": "CFS"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2020-11-14"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Evaluation of Classification System Using Naïve Bayes Classifier and Feature Selection Algorithms.pdf", "filesize": [{"value": "154 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "application/pdf", "size": 154000.0, "url": {"url": "https://meral.edu.mm/record/6175/files/Evaluation of Classification System Using Naïve Bayes Classifier and Feature Selection Algorithms.pdf"}, "version_id": "40c82271-8620-4623-8128-abd1f9a43ce1"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "VII", "subitem_journal_title": "International Journal of Management, Technology And Engineering", "subitem_pages": "400-404", "subitem_volume": "8"}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Aung Nway Oo"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Journal article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2018-07-02"}, "item_title": "Evaluation of Classification System Using Naïve Bayes Classifier and Feature Selection Algorithms", "item_type_id": "21", "owner": "45", "path": ["1596102355557"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000006175", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2020-11-14"}, "publish_date": "2020-11-14", "publish_status": "0", "recid": "6175", "relation": {}, "relation_version_is_last": true, "title": ["Evaluation of Classification System Using Naïve Bayes Classifier and Feature Selection Algorithms"], "weko_shared_id": -1}
Evaluation of Classification System Using Naïve Bayes Classifier and Feature Selection Algorithms
http://hdl.handle.net/20.500.12678/0000006175
http://hdl.handle.net/20.500.12678/00000061759f699010-daa5-4b70-83da-4164762afa53
84713a5e-0024-49bf-ae45-26e1f4567494
Name / File | License | Actions |
---|---|---|
![]() |
|
Publication type | ||||||
---|---|---|---|---|---|---|
Journal article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Evaluation of Classification System Using Naïve Bayes Classifier and Feature Selection Algorithms | |||||
Language | en | |||||
Publication date | 2018-07-02 | |||||
Authors | ||||||
Aung Nway Oo | ||||||
Description | ||||||
In machine learning, feature selection, also known as variable selection, attribute selection or variable subset selection, is the process of selecting a subset of relevant for use in model construction. The feature selection approach gives enhanced prediction and reduces the computation time. This paper presents the comparative analysis of Naïve Bayes (NB) classifier with using two feature selection approaches namely Principal Component Analysis (PCA) and Correlation-based Feature Subset Selection (CFS). The experimental results prove that feature selection based Naïve Bayes classifier achieve higher accuracy rate. | ||||||
Keywords | ||||||
feature selection, NB, PCA, CFS | ||||||
Journal articles | ||||||
VII | ||||||
International Journal of Management, Technology And Engineering | ||||||
400-404 | ||||||
8 |