-
RootNode
Item
{"_buckets": {"deposit": "02499ff2-6c8f-4fca-b6c6-eaf1605b420b"}, "_deposit": {"created_by": 45, "id": "5410", "owner": "45", "owners": [45], "owners_ext": {"displayname": "", "username": ""}, "pid": {"revision_id": 0, "type": "recid", "value": "5410"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/5410", "sets": ["user-uit"]}, "communities": ["uit"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Automatic Assessing Body Condition Score from Digital Images by Active Shape Model and Multiple Regression Technique", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Body Condition Score (BCS) of a dairy cow is a magnificent indicator for determining energy reserves of cows. The\npurpose of this study is to assess BCS of dairy cattle by analyzing cows’ rear-view images. In order to do so, we first\nmodel shape of cow’s tailhead area by using active shape model. Then, angle features are modelled as multiple\nregression model for estimating scores. The experimental results show that proposed system is promising compared\nto some existing methods."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Body Condition Score"}, {"interim": "Active Shape Model"}, {"interim": "Multiple Regression Analysis"}, {"interim": "Angle features"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_no", "licensefree": "© The 2017 International Conference on Artificial Life and Robotics (ICAROB 2017)", "licensetype": "license_0"}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "ICAROB", "subitem_c_date": "19-22 January, 2017", "subitem_conference_title": "The 2017 International Conference on Artificial Life and Robotics", "subitem_place": "Seagaia Convention Center, Miyazaki, Japan", "subitem_website": "https://alife-robotics.co.jp/LP/2017/OS20-3.htm"}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Nay Chi Lynn"}, {"subitem_authors_fullname": "Thi Thi Zin"}, {"subitem_authors_fullname": "Ikuo Kobayashi"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Conference paper"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2017-01-22"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "10.5954/icarob.2017.os20-3"}, "item_title": "Automatic Assessing Body Condition Score from Digital Images by Active Shape Model and Multiple Regression Technique", "item_type_id": "21", "owner": "45", "path": ["1596102391527"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000005410", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2020-09-16"}, "publish_date": "2020-09-16", "publish_status": "0", "recid": "5410", "relation": {}, "relation_version_is_last": true, "title": ["Automatic Assessing Body Condition Score from Digital Images by Active Shape Model and Multiple Regression Technique"], "weko_shared_id": -1}
Automatic Assessing Body Condition Score from Digital Images by Active Shape Model and Multiple Regression Technique
http://hdl.handle.net/20.500.12678/0000005410
http://hdl.handle.net/20.500.12678/00000054102099a7ef-0602-45e7-926a-12f3c072d844
02499ff2-6c8f-4fca-b6c6-eaf1605b420b
Publication type | ||||||
---|---|---|---|---|---|---|
Conference paper | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Automatic Assessing Body Condition Score from Digital Images by Active Shape Model and Multiple Regression Technique | |||||
Language | en | |||||
Publication date | 2017-01-22 | |||||
Authors | ||||||
Nay Chi Lynn | ||||||
Thi Thi Zin | ||||||
Ikuo Kobayashi | ||||||
Description | ||||||
Body Condition Score (BCS) of a dairy cow is a magnificent indicator for determining energy reserves of cows. The purpose of this study is to assess BCS of dairy cattle by analyzing cows’ rear-view images. In order to do so, we first model shape of cow’s tailhead area by using active shape model. Then, angle features are modelled as multiple regression model for estimating scores. The experimental results show that proposed system is promising compared to some existing methods. |
||||||
Keywords | ||||||
Body Condition Score, Active Shape Model, Multiple Regression Analysis, Angle features | ||||||
Identifier | 10.5954/icarob.2017.os20-3 | |||||
Conference papers | ||||||
ICAROB | ||||||
19-22 January, 2017 | ||||||
The 2017 International Conference on Artificial Life and Robotics | ||||||
Seagaia Convention Center, Miyazaki, Japan | ||||||
https://alife-robotics.co.jp/LP/2017/OS20-3.htm |