MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "79fbc093-5f4f-4dd8-b970-9ab4dcebafa2"}, "_deposit": {"created_by": 61, "id": "5335", "owner": "61", "owners": [61], "owners_ext": {"displayname": "", "username": ""}, "pid": {"revision_id": 0, "type": "recid", "value": "5335"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/5335", "sets": ["user-yuoe"]}, "communities": ["yuoe"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Hilbert Basis Theorem and Grobner Basis for Polynomial Ideals", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "This paper is an exposition of Hilbert Basis Theorem and Grobner Basis. We first recall\nsome basis concepts of the ideal theory and Hilbert Basis theorem for Polynomial ideals.\nHilbert Basis Theorem states that every polynomial ideal is finitely generated. Then we\ndiscuss the Grobner Basis for polynomial ideals which is an essential tool for\ncomputational Algebraic Geometry."}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2020-09-11"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Hilbert Basis Theorem and Grobner Basis for Polynomial Ideals.pdf", "filesize": [{"value": "108 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_0", "mimetype": "application/pdf", "size": 108000.0, "url": {"url": "https://meral.edu.mm/record/5335/files/Hilbert Basis Theorem and Grobner Basis for Polynomial Ideals.pdf"}, "version_id": "740c0a4b-f621-478d-bcca-34e4950de768"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "2", "subitem_journal_title": "Yangon University of Education Research Journal", "subitem_pages": "171-175", "subitem_volume": "Vol.10"}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Lwin Mar Htun"}, {"subitem_authors_fullname": "Sandar"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Journal article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2020"}, "item_title": "Hilbert Basis Theorem and Grobner Basis for Polynomial Ideals", "item_type_id": "21", "owner": "61", "path": ["1595850204980"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000005335", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2020-09-11"}, "publish_date": "2020-09-11", "publish_status": "0", "recid": "5335", "relation": {}, "relation_version_is_last": true, "title": ["Hilbert Basis Theorem and Grobner Basis for Polynomial Ideals"], "weko_shared_id": -1}
Hilbert Basis Theorem and Grobner Basis for Polynomial Ideals
http://hdl.handle.net/20.500.12678/0000005335
http://hdl.handle.net/20.500.12678/000000533591d710ea-9894-48de-aca5-7e489d627cac
79fbc093-5f4f-4dd8-b970-9ab4dcebafa2
Name / File | License | Actions |
---|---|---|
Hilbert Basis Theorem and Grobner Basis for Polynomial Ideals.pdf (108 Kb)
|
Publication type | ||||||
---|---|---|---|---|---|---|
Journal article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Hilbert Basis Theorem and Grobner Basis for Polynomial Ideals | |||||
Language | en | |||||
Publication date | 2020 | |||||
Authors | ||||||
Lwin Mar Htun | ||||||
Sandar | ||||||
Description | ||||||
This paper is an exposition of Hilbert Basis Theorem and Grobner Basis. We first recall some basis concepts of the ideal theory and Hilbert Basis theorem for Polynomial ideals. Hilbert Basis Theorem states that every polynomial ideal is finitely generated. Then we discuss the Grobner Basis for polynomial ideals which is an essential tool for computational Algebraic Geometry. |
||||||
Journal articles | ||||||
2 | ||||||
Yangon University of Education Research Journal | ||||||
171-175 | ||||||
Vol.10 |