Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "94c1ec0e-eda1-4eb8-9124-0e845bf3d8c7"}, "_deposit": {"created_by": 61, "id": "5333", "owner": "61", "owners": [61], "owners_ext": {"displayname": "", "username": ""}, "pid": {"revision_id": 0, "type": "recid", "value": "5333"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/5333", "sets": ["user-yuoe"]}, "communities": ["yuoe"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Cholesky Factorization of Matrices", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Cholesky factorization is a type of matrix factorization which is used for solving system of\nlinear equations. In this paper, we will study the factorization of real positive definite\nmatrices by using Cholesky factorization. This type of factorization is in the form\n = where L is lower triangular matrix. First, the diagonalization of a matrix will be\npresented, second, positive definite matrix and its properties will be discussed. Finally, the\nCholesky factorization of real positive definite matrices will be discussed in numerically\npoint of view."}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2020-09-11"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Cholesky Factorization of Matrices.pdf", "filesize": [{"value": "186 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_0", "mimetype": "application/pdf", "size": 186000.0, "url": {"url": "https://meral.edu.mm/record/5333/files/Cholesky Factorization of Matrices.pdf"}, "version_id": "ef26b388-0123-41e0-9c5a-617021eb648d"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "1", "subitem_journal_title": "Yangon University of Education Research Journal", "subitem_pages": "211-220", "subitem_volume": "Vol.10"}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Khin Myo Aye"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Journal article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2020"}, "item_title": "Cholesky Factorization of Matrices", "item_type_id": "21", "owner": "61", "path": ["1595850204980"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000005333", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2020-09-11"}, "publish_date": "2020-09-11", "publish_status": "0", "recid": "5333", "relation": {}, "relation_version_is_last": true, "title": ["Cholesky Factorization of Matrices"], "weko_shared_id": -1}
  1. Yangon University of Education
  2. Department of Mathematics

Cholesky Factorization of Matrices

http://hdl.handle.net/20.500.12678/0000005333
http://hdl.handle.net/20.500.12678/0000005333
f58c3874-241b-45a7-9d46-f45e38da4af2
94c1ec0e-eda1-4eb8-9124-0e845bf3d8c7
None
Preview
Name / File License Actions
Cholesky Cholesky Factorization of Matrices.pdf (186 Kb)
license.icon
Publication type
Journal article
Upload type
Publication
Title
Title Cholesky Factorization of Matrices
Language en
Publication date 2020
Authors
Khin Myo Aye
Description
Cholesky factorization is a type of matrix factorization which is used for solving system of
linear equations. In this paper, we will study the factorization of real positive definite
matrices by using Cholesky factorization. This type of factorization is in the form
= where L is lower triangular matrix. First, the diagonalization of a matrix will be
presented, second, positive definite matrix and its properties will be discussed. Finally, the
Cholesky factorization of real positive definite matrices will be discussed in numerically
point of view.
Journal articles
1
Yangon University of Education Research Journal
211-220
Vol.10
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-11 04:38:25.590917
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL