MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "9b887fa9-5a88-4306-acca-38b9555a5538"}, "_deposit": {"created_by": 23, "id": "5145", "owner": "23", "owners": [23], "owners_ext": {"displayname": "", "username": ""}, "pid": {"revision_id": 0, "type": "recid", "value": "5145"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/5145", "sets": ["1582963739756", "1582967025340", "user-um"]}, "communities": ["um"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "The Proton-K- (pK -) Bound State in Momentum Space", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "In this paper, the Lippmann-Schwinger Equation for two body state in momentum space is set up analytically and solved numerically, in which Yamazaki\u0027s potential are used. We have found that the binding energy of system is 27.8089 MeV and the width is 39.9207 MeV. The average kinetic energy of system is 115.28 MeV and the potential energy (-143.0902-i19.7604 MeV). The relative momentum is 273.10 MeV/c and the root-mean-square distance is 1.33 fm. The ground state of in system is predicted to be ^*(1405)."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Lippmann-Schwinger equation"}, {"interim": "momentum space"}, {"interim": "hyperon resonance"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2020-09-02"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "The Proton-K (pK ) Bound State in Momentum Space.pdf", "filesize": [{"value": "329 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_0", "mimetype": "application/pdf", "size": 329000.0, "url": {"url": "https://meral.edu.mm/record/5145/files/The Proton-K (pK ) Bound State in Momentum Space.pdf"}, "version_id": "5040a5d6-ee03-4716-b630-55548967878b"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "3", "subitem_journal_title": "University of Mandalay Research Journal", "subitem_pages": "128-133", "subitem_volume": "11"}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Kyaw Thiha"}, {"subitem_authors_fullname": "Htun Htun Oo"}, {"subitem_authors_fullname": "Aung Kyaw Myo"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Journal article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2020-05-02"}, "item_title": "The Proton-K- (pK -) Bound State in Momentum Space", "item_type_id": "21", "owner": "23", "path": ["1582963739756", "1582967025340"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000005145", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2020-09-02"}, "publish_date": "2020-09-02", "publish_status": "0", "recid": "5145", "relation": {}, "relation_version_is_last": true, "title": ["The Proton-K- (pK -) Bound State in Momentum Space"], "weko_shared_id": -1}
The Proton-K- (pK -) Bound State in Momentum Space
http://hdl.handle.net/20.500.12678/0000005145
http://hdl.handle.net/20.500.12678/0000005145232121d6-991c-4ba2-a661-5fe6742f6022
9b887fa9-5a88-4306-acca-38b9555a5538
Name / File | License | Actions |
---|---|---|
![]() |
Publication type | ||||||
---|---|---|---|---|---|---|
Journal article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | The Proton-K- (pK -) Bound State in Momentum Space | |||||
Language | en | |||||
Publication date | 2020-05-02 | |||||
Authors | ||||||
Kyaw Thiha | ||||||
Htun Htun Oo | ||||||
Aung Kyaw Myo | ||||||
Description | ||||||
In this paper, the Lippmann-Schwinger Equation for two body state in momentum space is set up analytically and solved numerically, in which Yamazaki's potential are used. We have found that the binding energy of system is 27.8089 MeV and the width is 39.9207 MeV. The average kinetic energy of system is 115.28 MeV and the potential energy (-143.0902-i19.7604 MeV). The relative momentum is 273.10 MeV/c and the root-mean-square distance is 1.33 fm. The ground state of in system is predicted to be ^*(1405). | ||||||
Keywords | ||||||
Lippmann-Schwinger equation, momentum space, hyperon resonance | ||||||
Journal articles | ||||||
3 | ||||||
University of Mandalay Research Journal | ||||||
128-133 | ||||||
11 |