Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • MERAL
  • Universities
  • Ranking
AND
To


Index Link

Index Tree

WEKO

One fine body…

Item

{"_buckets": {"deposit": "3f558fea-2cd9-4703-95ed-1ccaae31dbb4"}, "_deposit": {"id": "5110", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "5110"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/5110"}, "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Information Retrieval System with Pseudo Relevance Feedback using Rocchio algorithm", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Information retrieval is concerned withorganizing and retrieving relevant documentsfrom a set of unstructured collections ofdocuments.In most collections, the same conceptmay be referred to using different word.This issueis known as synonymy which has an impact on therecall of most information retrieval systems.Theproblem can be eliminated by means of relevancefeedback where user judges the result of the initialquery, and system refines the query vector toimprove the recall.But in normal relevancefeedback, users have to give manual feedbackwhich is inflexible, so the proposed system usespseudo relevance feedback where top-k retrieveddocuments are assumed to be relevance and queryis rewrite using Rocchio algorithm.Finally thesystem analyzes with precision and recall ofinformation retrieval results"}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_name_i18n": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-19"}], "displaytype": "preview", "download_preview_message": "", "filename": "118_PDFsam_PSC_final proof.pdf", "filesize": [{"value": "137 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 137000, "url": {"url": "https://meral.edu.mm/record/5110/files/118_PDFsam_PSC_final proof.pdf"}, "version_id": "d974853c-810f-4247-903d-da4779f9eb13"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Eighth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Win, Zin Mar"}, {"subitem_authors_fullname": "Wai, Ei Nyein Chan"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_name_i18n": "Upload type", "attribute_value": "Publication"}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_name_i18n": "Publication type", "attribute_value": "Article"}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_name_i18n": "Publication date", "attribute_value": "2017-12-27"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/998"}, "item_title": "Information Retrieval System with Pseudo Relevance Feedback using Rocchio algorithm", "item_type_id": "21", "owner": "1", "path": ["1582963302567/1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000005110", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-19"}, "publish_date": "2019-07-19", "publish_status": "0", "recid": "5110", "relation": {}, "relation_version_is_last": true, "title": ["Information Retrieval System with Pseudo Relevance Feedback using Rocchio algorithm"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Information Retrieval System with Pseudo Relevance Feedback using Rocchio algorithm

http://hdl.handle.net/20.500.12678/0000005110
a136995d-ab6c-44bb-81e7-75d8227e155c
3f558fea-2cd9-4703-95ed-1ccaae31dbb4
Preview
Name / File License Actions
118_PDFsam_PSC_final 118_PDFsam_PSC_final proof.pdf (137 Kb)
Publication type Article
Upload type Publication
Title
Information Retrieval System with Pseudo Relevance Feedback using Rocchio algorithm
en
Publication date 2017-12-27
Authors
Win, Zin Mar
Wai, Ei Nyein Chan
Description
Information retrieval is concerned withorganizing and retrieving relevant documentsfrom a set of unstructured collections ofdocuments.In most collections, the same conceptmay be referred to using different word.This issueis known as synonymy which has an impact on therecall of most information retrieval systems.Theproblem can be eliminated by means of relevancefeedback where user judges the result of the initialquery, and system refines the query vector toimprove the recall.But in normal relevancefeedback, users have to give manual feedbackwhich is inflexible, so the proposed system usespseudo relevance feedback where top-k retrieveddocuments are assumed to be relevance and queryis rewrite using Rocchio algorithm.Finally thesystem analyzes with precision and recall ofinformation retrieval results
Journal articles
Eighth Local Conference on Parallel and Soft Computing
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 15:46:04.323755
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL