Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • MERAL
  • Universities
  • Ranking
AND
To


Index Link

Index Tree

WEKO

One fine body…

Item

{"_buckets": {"deposit": "d8a279f8-cf03-45ed-a6bd-1ff79bc11ed6"}, "_deposit": {"id": "5087", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "5087"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/5087"}, "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Stock Trend Prediction from Mobile Device through Web Services", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "This paper presents a study of regression analysisfor use in stock price prediction. The system showsthe stock market trend of the specified bank usingthe previous stock prices. Data were obtainedfrom the daily official list of the prices of allshares traded on the stock exchange. Androiddevices invoke stock price prediction process viarestful web service. In the server side, the datamining process uncovers patterns andrelationships and also extracts values of variablesfrom the database to predict the future values ofother variables through the use of time series datathat employed moving average method. The datamining process predicts the trend of the futurestock market price. The predicted result is sent asJSON response to android device. Android clientshows the result with graph lines to supportinvestors for decision making in stock market. Forreducing the risk in stock investment, the investorscan see the predicted trends of the companiescomparing in one graph diagram and makedecisions."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_name_i18n": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-18"}], "displaytype": "preview", "download_preview_message": "", "filename": "84_PDFsam_PSC_final proof.pdf", "filesize": [{"value": "137 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 137000, "url": {"url": "https://meral.edu.mm/record/5087/files/84_PDFsam_PSC_final proof.pdf"}, "version_id": "5d9cd113-aae2-4542-9cff-2b045202926d"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Eighth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Aung, Kay Thi"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_name_i18n": "Upload type", "attribute_value": "Publication"}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_name_i18n": "Publication type", "attribute_value": "Article"}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_name_i18n": "Publication date", "attribute_value": "2017-12-27"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/977"}, "item_title": "Stock Trend Prediction from Mobile Device through Web Services", "item_type_id": "21", "owner": "1", "path": ["1582963302567/1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000005087", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-18"}, "publish_date": "2019-07-18", "publish_status": "0", "recid": "5087", "relation": {}, "relation_version_is_last": true, "title": ["Stock Trend Prediction from Mobile Device through Web Services"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Stock Trend Prediction from Mobile Device through Web Services

http://hdl.handle.net/20.500.12678/0000005087
5a403990-87c4-4012-b34a-231ad4249497
d8a279f8-cf03-45ed-a6bd-1ff79bc11ed6
Preview
Name / File License Actions
84_PDFsam_PSC_final 84_PDFsam_PSC_final proof.pdf (137 Kb)
Publication type Article
Upload type Publication
Title
Stock Trend Prediction from Mobile Device through Web Services
en
Publication date 2017-12-27
Authors
Aung, Kay Thi
Description
This paper presents a study of regression analysisfor use in stock price prediction. The system showsthe stock market trend of the specified bank usingthe previous stock prices. Data were obtainedfrom the daily official list of the prices of allshares traded on the stock exchange. Androiddevices invoke stock price prediction process viarestful web service. In the server side, the datamining process uncovers patterns andrelationships and also extracts values of variablesfrom the database to predict the future values ofother variables through the use of time series datathat employed moving average method. The datamining process predicts the trend of the futurestock market price. The predicted result is sent asJSON response to android device. Android clientshows the result with graph lines to supportinvestors for decision making in stock market. Forreducing the risk in stock investment, the investorscan see the predicted trends of the companiescomparing in one graph diagram and makedecisions.
Journal articles
Eighth Local Conference on Parallel and Soft Computing
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 15:44:06.255741
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL