MERAL Myanmar Education Research and Learning Portal
AND
Item
{"_buckets": {"deposit": "9e2dfb89-9c83-4003-b737-621c7c841daa"}, "_deposit": {"id": "5070", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "5070"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/5070"}, "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Credit Card Classification using Integration of Hierarchical Agglomerative Clustering and C4.5 Decision Tree", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Credit card classification is a systemfor credit card users which is used to assign eithera \u0026quot;good credit card \u0026quot;,which is likely to repayfinancial obligation, or a \u0026quot;bad credit card \u0026quot;,which has high possibility of defaulting onfinancial obligation. In a credit cardclassification, a credit card user\u2019s data isusuallyassessed and evaluated, like his financial status,annual and monthly income, assets and liabilitiesand previous past payments to distinguish betweena \u201cgood\u201d and a \u201cbad\u201d credit card for theuser.This paper presents the automatic credit cardclassification using integration of clustering andclassification algorithm. The goal of this paperistopredict the status of credit card such as good orbad. The empirical study between the integrationof hierarchical agglomerative algorithm and C 4.5decision tree algorithm and traditional C4.5decision tree algorithm areapplied based onStalog (\u201cGerman credit data\u201d) dataset from UCImachine learning repository. Then, the accuraciesof these two algorithms are compared. Accordingto experimental results, the integration ofhierarchical agglomerative clustering and C4.5decision tree could achieve higher accuracy thanthe traditional C4.5 decision tree."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_name_i18n": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-18"}], "displaytype": "preview", "download_preview_message": "", "filename": "64_PDFsam_PSC_final proof.pdf", "filesize": [{"value": "244 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 244000, "url": {"url": "https://meral.edu.mm/record/5070/files/64_PDFsam_PSC_final proof.pdf"}, "version_id": "308183de-a7b5-4416-9f34-1862344e976e"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Eighth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Tun, May Thet"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_name_i18n": "Upload type", "attribute_value": "Publication"}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_name_i18n": "Publication type", "attribute_value": "Article"}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_name_i18n": "Publication date", "attribute_value": "2017-12-27"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/961"}, "item_title": "Credit Card Classification using Integration of Hierarchical Agglomerative Clustering and C4.5 Decision Tree", "item_type_id": "21", "owner": "1", "path": ["1582963302567/1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000005070", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-18"}, "publish_date": "2019-07-18", "publish_status": "0", "recid": "5070", "relation": {}, "relation_version_is_last": true, "title": ["Credit Card Classification using Integration of Hierarchical Agglomerative Clustering and C4.5 Decision Tree"], "weko_shared_id": -1}
Credit Card Classification using Integration of Hierarchical Agglomerative Clustering and C4.5 Decision Tree
http://hdl.handle.net/20.500.12678/0000005070
046d5f7e-04a6-4a7f-9cec-19bec20b065f
9e2dfb89-9c83-4003-b737-621c7c841daa
Name / File | License | Actions | |
---|---|---|---|
![]() |
|
Publication type | Article | |||||
---|---|---|---|---|---|---|
Upload type | Publication | |||||
Title | ||||||
Credit Card Classification using Integration of Hierarchical Agglomerative Clustering and C4.5 Decision Tree | ||||||
en | ||||||
Publication date | 2017-12-27 | |||||
Authors | ||||||
Tun, May Thet | ||||||
Description | ||||||
Credit card classification is a systemfor credit card users which is used to assign eithera "good credit card ",which is likely to repayfinancial obligation, or a "bad credit card ",which has high possibility of defaulting onfinancial obligation. In a credit cardclassification, a credit card user’s data isusuallyassessed and evaluated, like his financial status,annual and monthly income, assets and liabilitiesand previous past payments to distinguish betweena “good” and a “bad” credit card for theuser.This paper presents the automatic credit cardclassification using integration of clustering andclassification algorithm. The goal of this paperistopredict the status of credit card such as good orbad. The empirical study between the integrationof hierarchical agglomerative algorithm and C 4.5decision tree algorithm and traditional C4.5decision tree algorithm areapplied based onStalog (“German credit data”) dataset from UCImachine learning repository. Then, the accuraciesof these two algorithms are compared. Accordingto experimental results, the integration ofhierarchical agglomerative clustering and C4.5decision tree could achieve higher accuracy thanthe traditional C4.5 decision tree. | ||||||
Journal articles | ||||||
Eighth Local Conference on Parallel and Soft Computing | ||||||
Conference papers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |