Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • MERAL
  • Universities
  • Ranking
AND
To


Index Link

Index Tree

WEKO

One fine body…

Item

{"_buckets": {"deposit": "e487a1d0-4fc6-4ac7-b847-340860575fd0"}, "_deposit": {"id": "5031", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "5031"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/5031"}, "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Analysis of Feature Extraction Techniques for Myanmar Automatic Speech Recognition", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Automatic Speech Recognition (ASR)system is to accurately and efficiently convertspeech signal into a text message independent ofdevice, speaker or the environment. Featureextraction is the second component of automaticspeech recognition systems which extract theinformation from the speech frame. The featureextraction is needed because the raw speechsignal contains information besides the Linguisticmessage and has a high dimensionality. Theprimary objective of feature extraction is to findrobust and discriminative features in the acousticdata. The recognition module uses the speechfeatures and the acoustic models to decode thespeech input and produces text results with highaccuracy. There are several techniques for featureextraction , this paper is the comparative analysisof four feature extraction techniques of FilterBank (FBank), Mel Frequency CepstralCoefficient (MFCC), Perceptual Linear Predictive(PLP) and Gammatone Frequency CepstralCoeffcieint (GFCC) for Myanmar continuous ASR.The experimental result shows that with theclassification method Gaussian Mixture Model(GMM). The better performance of featureextraction method is to support for Myanmar ASR."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_name_i18n": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-18"}], "displaytype": "preview", "download_preview_message": "", "filename": "20_PDFsam_PSC_final proof.pdf", "filesize": [{"value": "110 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 110000, "url": {"url": "https://meral.edu.mm/record/5031/files/20_PDFsam_PSC_final proof.pdf"}, "version_id": "8eb7739a-77de-4a95-a959-b5d4d8d4a902"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Eighth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Aung, Myat Aye Aye"}, {"subitem_authors_fullname": "Pa, Win Pa"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_name_i18n": "Upload type", "attribute_value": "Publication"}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_name_i18n": "Publication type", "attribute_value": "Article"}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_name_i18n": "Publication date", "attribute_value": "2017-12-27"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/926"}, "item_title": "Analysis of Feature Extraction Techniques for Myanmar Automatic Speech Recognition", "item_type_id": "21", "owner": "1", "path": ["1582963302567/1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000005031", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-18"}, "publish_date": "2019-07-18", "publish_status": "0", "recid": "5031", "relation": {}, "relation_version_is_last": true, "title": ["Analysis of Feature Extraction Techniques for Myanmar Automatic Speech Recognition"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Analysis of Feature Extraction Techniques for Myanmar Automatic Speech Recognition

http://hdl.handle.net/20.500.12678/0000005031
d7201860-a9c1-49b7-86d4-6337037451ba
e487a1d0-4fc6-4ac7-b847-340860575fd0
Preview
Name / File License Actions
20_PDFsam_PSC_final 20_PDFsam_PSC_final proof.pdf (110 Kb)
Publication type Article
Upload type Publication
Title
Analysis of Feature Extraction Techniques for Myanmar Automatic Speech Recognition
en
Publication date 2017-12-27
Authors
Aung, Myat Aye Aye
Pa, Win Pa
Description
Automatic Speech Recognition (ASR)system is to accurately and efficiently convertspeech signal into a text message independent ofdevice, speaker or the environment. Featureextraction is the second component of automaticspeech recognition systems which extract theinformation from the speech frame. The featureextraction is needed because the raw speechsignal contains information besides the Linguisticmessage and has a high dimensionality. Theprimary objective of feature extraction is to findrobust and discriminative features in the acousticdata. The recognition module uses the speechfeatures and the acoustic models to decode thespeech input and produces text results with highaccuracy. There are several techniques for featureextraction , this paper is the comparative analysisof four feature extraction techniques of FilterBank (FBank), Mel Frequency CepstralCoefficient (MFCC), Perceptual Linear Predictive(PLP) and Gammatone Frequency CepstralCoeffcieint (GFCC) for Myanmar continuous ASR.The experimental result shows that with theclassification method Gaussian Mixture Model(GMM). The better performance of featureextraction method is to support for Myanmar ASR.
Journal articles
Eighth Local Conference on Parallel and Soft Computing
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 15:39:42.764856
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL