MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "9d8c28df-ed63-4ddf-a8d0-cb9ee403bf89"}, "_deposit": {"id": "5020", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "5020"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/5020", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Dynamic Replication Management Scheme for Distributed File System", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Nowadays, replication technique is widely used in data centerstorage systems to prevent data loss. Data popularity is a key factor in datareplication as popular files are accessed most frequently and then they becomeunstable and unpredictable. Moreover, replicas placement is one of key issuesthat affect the performance of the system such as load balancing, data localityetc. Data locality is a fundamental problem to data-parallel applications thatoften happens and this problem leads to the decrease in performance. To addressthese challenges, this paper proposes a dynamic replication management schemebased on data popularity and data locality; it includes replica allocation andreplica placement algorithms. Data locality, disk bandwidth, CPU processingspeed and storage utilization are considered in the proposed data placementalgorithm in order to achieve better data locality and load balancing effectively.Our proposed scheme will be effective for large-scale cloud storage."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Replication"}, {"interim": "Data Popularity"}, {"interim": "Data Locality"}, {"interim": "Storage Utilization"}, {"interim": "Disk Bandwidth"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-16"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "ICBDL2018.pdf", "filesize": [{"value": "630 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 630000.0, "url": {"url": "https://meral.edu.mm/record/5020/files/ICBDL2018.pdf"}, "version_id": "f48f6e5d-f613-44e1-abfb-2408aca270fe"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "1st International Conference on Big Data Analysis and Deep Learning Applications (ICBDL)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Thu, May Phyo"}, {"subitem_authors_fullname": "Nwe, Khine Moe"}, {"subitem_authors_fullname": "Aye, Kyar Nyo"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Book section"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2018"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "https://doi.org/10.1007/978-981-13-0869-7_16"}, "item_title": "Dynamic Replication Management Scheme for Distributed File System", "item_type_id": "21", "owner": "1", "path": ["1597824175385"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000005020", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-16"}, "publish_date": "2019-07-16", "publish_status": "0", "recid": "5020", "relation": {}, "relation_version_is_last": true, "title": ["Dynamic Replication Management Scheme for Distributed File System"], "weko_shared_id": -1}
Dynamic Replication Management Scheme for Distributed File System
http://hdl.handle.net/20.500.12678/0000005020
http://hdl.handle.net/20.500.12678/00000050200934e10a-0749-4f0d-a1b4-29503ddc06fc
9d8c28df-ed63-4ddf-a8d0-cb9ee403bf89
Name / File | License | Actions |
---|---|---|
ICBDL2018.pdf (630 Kb)
|
|
Publication type | ||||||
---|---|---|---|---|---|---|
Book section | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Dynamic Replication Management Scheme for Distributed File System | |||||
Language | en | |||||
Publication date | 2018 | |||||
Authors | ||||||
Thu, May Phyo | ||||||
Nwe, Khine Moe | ||||||
Aye, Kyar Nyo | ||||||
Description | ||||||
Nowadays, replication technique is widely used in data centerstorage systems to prevent data loss. Data popularity is a key factor in datareplication as popular files are accessed most frequently and then they becomeunstable and unpredictable. Moreover, replicas placement is one of key issuesthat affect the performance of the system such as load balancing, data localityetc. Data locality is a fundamental problem to data-parallel applications thatoften happens and this problem leads to the decrease in performance. To addressthese challenges, this paper proposes a dynamic replication management schemebased on data popularity and data locality; it includes replica allocation andreplica placement algorithms. Data locality, disk bandwidth, CPU processingspeed and storage utilization are considered in the proposed data placementalgorithm in order to achieve better data locality and load balancing effectively.Our proposed scheme will be effective for large-scale cloud storage. | ||||||
Keywords | ||||||
Replication, Data Popularity, Data Locality, Storage Utilization, Disk Bandwidth | ||||||
Identifier | https://doi.org/10.1007/978-981-13-0869-7_16 | |||||
Journal articles | ||||||
1st International Conference on Big Data Analysis and Deep Learning Applications (ICBDL) | ||||||
Conference papers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |