Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • MERAL
  • Universities
  • Ranking
AND
To


Index Link

Index Tree

WEKO

One fine body…

Item

{"_buckets": {"deposit": "9b2c2e07-0e0e-42aa-8812-d71683cf4d0a"}, "_deposit": {"id": "5010", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "5010"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/5010"}, "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Searching Suitable Employee for the Work by Using Partitioning Methods", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Conventional database query methods areinadequate to extract useful information from hugedata banks. Cluster analysis is one of the major dataanalysis methods, and process of grouping a set ofphysical or abstract objects into classes of similarobjects. A cluster is the collection of data objects thatare similar to one another within the same clusterand are dissimilar to the objects in other clusters.There are many approaches for clustering method.Partitioning is the well-known and efficientalgorithm and K-Mean is the partitioning methodand widely used in many applications. In this paper,K-means clustering method is used to find theappropriate employee from many job seekers andgive that information to the employer to choose fortheir work. The k-means clustering methods aredetermining level of employee based on theirprofiles. Thus, many companies are easy to findappropriate employee for their work."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_name_i18n": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-15"}], "displaytype": "preview", "download_preview_message": "", "filename": "psc2010paper (160).pdf", "filesize": [{"value": "53 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 53000, "url": {"url": "https://meral.edu.mm/record/5010/files/psc2010paper (160).pdf"}, "version_id": "4e5b9ddd-6f8c-4f8d-a3a0-66d23dd72d85"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fifth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Nwe, Win Hay Mar"}, {"subitem_authors_fullname": "Kham, Nang Saing Moon"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_name_i18n": "Upload type", "attribute_value": "Publication"}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_name_i18n": "Publication type", "attribute_value": "Article"}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_name_i18n": "Publication date", "attribute_value": "2010-12-16"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/906"}, "item_title": "Searching Suitable Employee for the Work by Using Partitioning Methods", "item_type_id": "21", "owner": "1", "path": ["1582963302567/1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000005010", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-15"}, "publish_date": "2019-07-15", "publish_status": "0", "recid": "5010", "relation": {}, "relation_version_is_last": true, "title": ["Searching Suitable Employee for the Work by Using Partitioning Methods"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Searching Suitable Employee for the Work by Using Partitioning Methods

http://hdl.handle.net/20.500.12678/0000005010
e96a683a-ec07-48f0-9031-dfb200ed74c3
9b2c2e07-0e0e-42aa-8812-d71683cf4d0a
Preview
Name / File License Actions
psc2010paper psc2010paper (160).pdf (53 Kb)
Publication type Article
Upload type Publication
Title
Searching Suitable Employee for the Work by Using Partitioning Methods
en
Publication date 2010-12-16
Authors
Nwe, Win Hay Mar
Kham, Nang Saing Moon
Description
Conventional database query methods areinadequate to extract useful information from hugedata banks. Cluster analysis is one of the major dataanalysis methods, and process of grouping a set ofphysical or abstract objects into classes of similarobjects. A cluster is the collection of data objects thatare similar to one another within the same clusterand are dissimilar to the objects in other clusters.There are many approaches for clustering method.Partitioning is the well-known and efficientalgorithm and K-Mean is the partitioning methodand widely used in many applications. In this paper,K-means clustering method is used to find theappropriate employee from many job seekers andgive that information to the employer to choose fortheir work. The k-means clustering methods aredetermining level of employee based on theirprofiles. Thus, many companies are easy to findappropriate employee for their work.
Journal articles
Fifth Local Conference on Parallel and Soft Computing
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 15:37:57.686055
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL