Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking


Index Link

Index Tree

  • RootNode
    • Co-operative College, Mandalay
    • Cooperative College, Phaunggyi
    • Co-operative University, Sagaing
    • Co-operative University, Thanlyin
    • Dagon University
    • Kyaukse University
    • Laquarware Technological college
    • Mandalay Technological University
    • Mandalay University of Distance Education
    • Mandalay University of Foreign Languages
    • Maubin University
    • Mawlamyine University
    • Meiktila University
    • Mohnyin University
    • Myanmar Institute of Information Technology
    • Myanmar Maritime University
    • National Management Degree College
    • Naypyitaw State Academy
    • Pathein University
    • Sagaing University
    • Sagaing University of Education
    • Taunggyi University
    • Technological University, Hmawbi
    • Technological University (Kyaukse)
    • Technological University Mandalay
    • University of Computer Studies, Mandalay
    • University of Computer Studies Maubin
    • University of Computer Studies, Meikhtila
    • University of Computer Studies Pathein
    • University of Computer Studies, Taungoo
    • University of Computer Studies, Yangon
    • University of Dental Medicine Mandalay
    • University of Dental Medicine, Yangon
    • University of Information Technology
    • University of Mandalay
    • University of Medicine 1
    • University of Medicine 2
    • University of Medicine Mandalay
    • University of Myitkyina
    • University of Public Health, Yangon
    • University of Veterinary Science
    • University of Yangon
    • West Yangon University
    • Yadanabon University
    • Yangon Technological University
    • Yangon University of Distance Education
    • Yangon University of Economics
    • Yangon University of Education
    • Yangon University of Foreign Languages
    • Yezin Agricultural University
    • New Index

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "e45a6b91-58b5-4833-b601-2d383e0457d6"}, "_deposit": {"id": "5005", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "5005"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/5005", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Extraction of Frequent Patterns from Diabetes Cluster", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Data mining is the process of discoveringinteresting knowledge, such as patterns,associations, changes, anomalies and significantstructures, from large amounts of data stored indatabases, data warehouses, or other informationrepositories. In this paper, we have proposed anefficient approach for the extraction of significantpatterns from the patients database for diabetesprediction. The diagnosis of diseases is a significantand tedious task in medicine. To facilitate thediagnosis process, the effort to utilize knowledge andexperience of numerous specialists and clinicalscreening data of patients collected in databases isconsidered a valuable option. The patients databaseis clustered using the KMIX clustering algorithm,which will extract the data relevant to diabetes fromthe database. Subsequently the frequent patterns aremined from the extracted data, relevant to diabetes,using the MAFIA algorithm. Then the significantpatterns to diabetes diagnosis are chosen from thesefrequent patterns. These patterns can be used toapply in the healthcare system."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Data Mining"}, {"interim": "Diabetes Diagnosis"}, {"interim": "Clustering"}, {"interim": "KMIX"}, {"interim": "Frequent Pattern Mining"}, {"interim": "MAFIA"}, {"interim": "Significant Pattern"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-15"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "psc2010paper (155).pdf", "filesize": [{"value": "62 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 62000.0, "url": {"url": "https://meral.edu.mm/record/5005/files/psc2010paper (155).pdf"}, "version_id": "a727bfc4-0c31-4921-84b8-a52b52dd7831"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fifth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Win, Myint Swe Lai"}, {"subitem_authors_fullname": "Phyu, Win Lei Lei"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2010-12-16"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/901"}, "item_title": "Extraction of Frequent Patterns from Diabetes Cluster", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000005005", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-15"}, "publish_date": "2019-07-15", "publish_status": "0", "recid": "5005", "relation": {}, "relation_version_is_last": true, "title": ["Extraction of Frequent Patterns from Diabetes Cluster"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Extraction of Frequent Patterns from Diabetes Cluster

http://hdl.handle.net/20.500.12678/0000005005
http://hdl.handle.net/20.500.12678/0000005005
460e8432-ec25-4ea9-a9d9-507a65af75db
e45a6b91-58b5-4833-b601-2d383e0457d6
None
Preview
Name / File License Actions
psc2010paper psc2010paper (155).pdf (62 Kb)
Publication type
Article
Upload type
Publication
Title
Title Extraction of Frequent Patterns from Diabetes Cluster
Language en
Publication date 2010-12-16
Authors
Win, Myint Swe Lai
Phyu, Win Lei Lei
Description
Data mining is the process of discoveringinteresting knowledge, such as patterns,associations, changes, anomalies and significantstructures, from large amounts of data stored indatabases, data warehouses, or other informationrepositories. In this paper, we have proposed anefficient approach for the extraction of significantpatterns from the patients database for diabetesprediction. The diagnosis of diseases is a significantand tedious task in medicine. To facilitate thediagnosis process, the effort to utilize knowledge andexperience of numerous specialists and clinicalscreening data of patients collected in databases isconsidered a valuable option. The patients databaseis clustered using the KMIX clustering algorithm,which will extract the data relevant to diabetes fromthe database. Subsequently the frequent patterns aremined from the extracted data, relevant to diabetes,using the MAFIA algorithm. Then the significantpatterns to diabetes diagnosis are chosen from thesefrequent patterns. These patterns can be used toapply in the healthcare system.
Keywords
Data Mining, Diabetes Diagnosis, Clustering, KMIX, Frequent Pattern Mining, MAFIA, Significant Pattern
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/901
Journal articles
Fifth Local Conference on Parallel and Soft Computing
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 15:37:40.134936
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL