MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "e45a6b91-58b5-4833-b601-2d383e0457d6"}, "_deposit": {"id": "5005", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "5005"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/5005", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Extraction of Frequent Patterns from Diabetes Cluster", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Data mining is the process of discoveringinteresting knowledge, such as patterns,associations, changes, anomalies and significantstructures, from large amounts of data stored indatabases, data warehouses, or other informationrepositories. In this paper, we have proposed anefficient approach for the extraction of significantpatterns from the patients database for diabetesprediction. The diagnosis of diseases is a significantand tedious task in medicine. To facilitate thediagnosis process, the effort to utilize knowledge andexperience of numerous specialists and clinicalscreening data of patients collected in databases isconsidered a valuable option. The patients databaseis clustered using the KMIX clustering algorithm,which will extract the data relevant to diabetes fromthe database. Subsequently the frequent patterns aremined from the extracted data, relevant to diabetes,using the MAFIA algorithm. Then the significantpatterns to diabetes diagnosis are chosen from thesefrequent patterns. These patterns can be used toapply in the healthcare system."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Data Mining"}, {"interim": "Diabetes Diagnosis"}, {"interim": "Clustering"}, {"interim": "KMIX"}, {"interim": "Frequent Pattern Mining"}, {"interim": "MAFIA"}, {"interim": "Significant Pattern"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-15"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "psc2010paper (155).pdf", "filesize": [{"value": "62 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 62000.0, "url": {"url": "https://meral.edu.mm/record/5005/files/psc2010paper (155).pdf"}, "version_id": "a727bfc4-0c31-4921-84b8-a52b52dd7831"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fifth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Win, Myint Swe Lai"}, {"subitem_authors_fullname": "Phyu, Win Lei Lei"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2010-12-16"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/901"}, "item_title": "Extraction of Frequent Patterns from Diabetes Cluster", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000005005", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-15"}, "publish_date": "2019-07-15", "publish_status": "0", "recid": "5005", "relation": {}, "relation_version_is_last": true, "title": ["Extraction of Frequent Patterns from Diabetes Cluster"], "weko_shared_id": -1}
Extraction of Frequent Patterns from Diabetes Cluster
http://hdl.handle.net/20.500.12678/0000005005
http://hdl.handle.net/20.500.12678/0000005005460e8432-ec25-4ea9-a9d9-507a65af75db
e45a6b91-58b5-4833-b601-2d383e0457d6
Name / File | License | Actions |
---|---|---|
![]() |
|
Publication type | ||||||
---|---|---|---|---|---|---|
Article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Extraction of Frequent Patterns from Diabetes Cluster | |||||
Language | en | |||||
Publication date | 2010-12-16 | |||||
Authors | ||||||
Win, Myint Swe Lai | ||||||
Phyu, Win Lei Lei | ||||||
Description | ||||||
Data mining is the process of discoveringinteresting knowledge, such as patterns,associations, changes, anomalies and significantstructures, from large amounts of data stored indatabases, data warehouses, or other informationrepositories. In this paper, we have proposed anefficient approach for the extraction of significantpatterns from the patients database for diabetesprediction. The diagnosis of diseases is a significantand tedious task in medicine. To facilitate thediagnosis process, the effort to utilize knowledge andexperience of numerous specialists and clinicalscreening data of patients collected in databases isconsidered a valuable option. The patients databaseis clustered using the KMIX clustering algorithm,which will extract the data relevant to diabetes fromthe database. Subsequently the frequent patterns aremined from the extracted data, relevant to diabetes,using the MAFIA algorithm. Then the significantpatterns to diabetes diagnosis are chosen from thesefrequent patterns. These patterns can be used toapply in the healthcare system. | ||||||
Keywords | ||||||
Data Mining, Diabetes Diagnosis, Clustering, KMIX, Frequent Pattern Mining, MAFIA, Significant Pattern | ||||||
Identifier | http://onlineresource.ucsy.edu.mm/handle/123456789/901 | |||||
Journal articles | ||||||
Fifth Local Conference on Parallel and Soft Computing | ||||||
Conference papers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |