MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "53a80d34-35d9-4d3f-a577-7dd810dec984"}, "_deposit": {"id": "4998", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4998"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4998", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Building HMM-SGMM Continuous Automatic Speech Recognition on Myanmar Web News", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Myanmar language is a tonal and analyticlanguage. It can be considered as an under-resourcedlanguage because of its linguistic resource availability.Therefore, speech data collection is a very challengingtask in building Myanmar automatic speechrecognition. Today a lot of speech data are freelyavailable on the Internet and we can collect it easily.Therefore, in this system, we take the advantages ofInternet and we use daily news from the Web inbuilding our speech corpus. In this paper, we willpresent about the task of data collection, the effect ofAutomatic Speech Recognition (ASR) performanceaccording to amount of training data, language modelsize and error analysis of the experimental result. Theexperiments will be developed using Hidden MarkovModel (HMM) with Gaussian Mixture Model (GMM)and Subspace Gaussian Mixture Model (SGMM). As aresult, using our developed 5 hours training data, thissystem achieves word error rate (WER) of 7.6% onclose test data and 31.9% on open test data withHMM-SGMM."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Automatic Speech Recognition (ASR)"}, {"interim": "speech corpus developing"}, {"interim": "News Domain"}, {"interim": "HMM-GMM"}, {"interim": "HMM-SGMM"}, {"interim": "Myanmar Language"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-15"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "proceeding_total-pages-446-453.pdf", "filesize": [{"value": "3734 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 3734000.0, "url": {"url": "https://meral.edu.mm/record/4998/files/proceeding_total-pages-446-453.pdf"}, "version_id": "fdf8e2f0-428a-4fc0-b7c6-413713c78308"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fifteenth International Conference on Computer Applications (ICCA 2017)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Mon, Aye Nyein"}, {"subitem_authors_fullname": "Pa, Win Pa"}, {"subitem_authors_fullname": "Thu, Ye Kyaw"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2017-02-16"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/895"}, "item_title": "Building HMM-SGMM Continuous Automatic Speech Recognition on Myanmar Web News", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004998", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-15"}, "publish_date": "2019-07-15", "publish_status": "0", "recid": "4998", "relation": {}, "relation_version_is_last": true, "title": ["Building HMM-SGMM Continuous Automatic Speech Recognition on Myanmar Web News"], "weko_shared_id": -1}
Building HMM-SGMM Continuous Automatic Speech Recognition on Myanmar Web News
http://hdl.handle.net/20.500.12678/0000004998
http://hdl.handle.net/20.500.12678/00000049983e0d9b51-e165-49ca-9920-3ed3c11d5057
53a80d34-35d9-4d3f-a577-7dd810dec984
Name / File | License | Actions |
---|---|---|
proceeding_total-pages-446-453.pdf (3734 Kb)
|
|
Publication type | ||||||
---|---|---|---|---|---|---|
Article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Building HMM-SGMM Continuous Automatic Speech Recognition on Myanmar Web News | |||||
Language | en | |||||
Publication date | 2017-02-16 | |||||
Authors | ||||||
Mon, Aye Nyein | ||||||
Pa, Win Pa | ||||||
Thu, Ye Kyaw | ||||||
Description | ||||||
Myanmar language is a tonal and analyticlanguage. It can be considered as an under-resourcedlanguage because of its linguistic resource availability.Therefore, speech data collection is a very challengingtask in building Myanmar automatic speechrecognition. Today a lot of speech data are freelyavailable on the Internet and we can collect it easily.Therefore, in this system, we take the advantages ofInternet and we use daily news from the Web inbuilding our speech corpus. In this paper, we willpresent about the task of data collection, the effect ofAutomatic Speech Recognition (ASR) performanceaccording to amount of training data, language modelsize and error analysis of the experimental result. Theexperiments will be developed using Hidden MarkovModel (HMM) with Gaussian Mixture Model (GMM)and Subspace Gaussian Mixture Model (SGMM). As aresult, using our developed 5 hours training data, thissystem achieves word error rate (WER) of 7.6% onclose test data and 31.9% on open test data withHMM-SGMM. | ||||||
Keywords | ||||||
Automatic Speech Recognition (ASR), speech corpus developing, News Domain, HMM-GMM, HMM-SGMM, Myanmar Language | ||||||
Identifier | http://onlineresource.ucsy.edu.mm/handle/123456789/895 | |||||
Journal articles | ||||||
Fifteenth International Conference on Computer Applications (ICCA 2017) | ||||||
Conference papers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |