Index Link

  • RootNode

Item

{"_buckets": {"deposit": "9a15bc8f-100a-4dfc-bec0-77871d9463dc"}, "_deposit": {"id": "4968", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4968"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4968", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Improved Cuckoo Search Clustering Algorithm (ICSCA)", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Clustering is a division of data into groups of similar objects. Each group called a cluster consists of objects that are similar between themselves and dissimilar compared to objects of the other groups. Cuckoo Search Clustering Algorithm (CSCA) is a recently developed nature inspired, unsupervised classification method, based on the most recent meta-heuristic algorithm, stirred by the breeding strategy of the parasitic bird, the cuckoo. To better exploit the search space and to enhance the accuracy of this algorithm, an Improved Cuckoo Search Clustering Algorithm (ICSCA) is proposed in this paper. Normally, in the search space, a substantial fraction of the new solutions should be generated by far field randomization and whose locations should be far enough from the current best solution, this will make sure the system will not be trapped in a local optimum. This ICSCA algorithm that is expected to find the global cuckoo solution and exploit the search space more thoroughly than CSCA algorithm is proposed."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Data Clusering"}, {"interim": "Cuckoo Search"}, {"interim": "Cuckoo Search Clustering Algorithm"}, {"interim": "Improved Cuckoo Search Clustering Algorithm"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-12"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "11098.pdf", "filesize": [{"value": "332 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 332000.0, "url": {"url": "https://meral.edu.mm/record/4968/files/11098.pdf"}, "version_id": "fa7d8723-e095-4fd5-af93-8339c4c2c099"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Eleventh International Conference On Computer Applications (ICCA 2013)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Zaw, Moe Moe"}, {"subitem_authors_fullname": "Mon, Ei Ei"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2013-02-26"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/867"}, "item_title": "Improved Cuckoo Search Clustering Algorithm (ICSCA)", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004968", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-12"}, "publish_date": "2019-07-12", "publish_status": "0", "recid": "4968", "relation": {}, "relation_version_is_last": true, "title": ["Improved Cuckoo Search Clustering Algorithm (ICSCA)"], "weko_shared_id": -1}

Improved Cuckoo Search Clustering Algorithm (ICSCA)

http://hdl.handle.net/20.500.12678/0000004968
6ca302c8-31b3-4850-b759-7ee083c3e8b7
9a15bc8f-100a-4dfc-bec0-77871d9463dc
None
Name / File License Actions
11098.pdf 11098.pdf (332 Kb)
Publication type
Article
Upload type
Publication
Title
Title Improved Cuckoo Search Clustering Algorithm (ICSCA)
Language en
Publication date 2013-02-26
Authors
Zaw, Moe Moe
Mon, Ei Ei
Description
Clustering is a division of data into groups of similar objects. Each group called a cluster consists of objects that are similar between themselves and dissimilar compared to objects of the other groups. Cuckoo Search Clustering Algorithm (CSCA) is a recently developed nature inspired, unsupervised classification method, based on the most recent meta-heuristic algorithm, stirred by the breeding strategy of the parasitic bird, the cuckoo. To better exploit the search space and to enhance the accuracy of this algorithm, an Improved Cuckoo Search Clustering Algorithm (ICSCA) is proposed in this paper. Normally, in the search space, a substantial fraction of the new solutions should be generated by far field randomization and whose locations should be far enough from the current best solution, this will make sure the system will not be trapped in a local optimum. This ICSCA algorithm that is expected to find the global cuckoo solution and exploit the search space more thoroughly than CSCA algorithm is proposed.
Keywords
Data Clusering, Cuckoo Search, Cuckoo Search Clustering Algorithm, Improved Cuckoo Search Clustering Algorithm
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/867
Journal articles
Eleventh International Conference On Computer Applications (ICCA 2013)
Conference papers
Books/reports/chapters
Thesis/dissertations
0
0
views
downloads
Views Downloads

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats