MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "b0f8512a-978a-45b5-9a24-f51b38fedaf6"}, "_deposit": {"id": "4965", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4965"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4965", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Comparative Study of Big Data Predictive Analytics Frameworks", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Big data in terms is the huge volume of datathat is difficult to be processed, handled andmanaged. The term big data is an emerging trendwhere a number of researches and data scientists arecarried out for data analytics. One of the mostinteresting thing in big data analytics is about thepredicting for future by using the data. Predictiveanalytics is the use of data and machine learning(ML) techniques to identify the future outcomes basedon historical data. With predictive analytics acompany can meaningfully leverage that businessdata to diagnose and solve business problems. Butchoosing a proper predictive analytics frameworkneed to be consider many things, and it is also vitalfor every data analysis project. The best and thesimplest practical way is to compare the responsetime of each framework. In this paper, we willinvestigate and compare two big data predictiveanalytics frameworks, Apache Mahout and SparkMLlib, from performance point of view. Thiscomparative study will make things easier to theresearcher and data scientists in the selection of bigdata analytics frameworks according to theiranalytics areas."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-12"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "proceeding_total-pages-363-369.pdf", "filesize": [{"value": "3281 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 3281000.0, "url": {"url": "https://meral.edu.mm/record/4965/files/proceeding_total-pages-363-369.pdf"}, "version_id": "c48aa5dc-3c15-456f-8c72-19d8d384ec99"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fifteenth International Conference on Computer Applications(ICCA 2017)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Win, Nay Aung Soe"}, {"subitem_authors_fullname": "Thwin, Mie Mie Su"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2017-02-16"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/864"}, "item_title": "Comparative Study of Big Data Predictive Analytics Frameworks", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004965", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-12"}, "publish_date": "2019-07-12", "publish_status": "0", "recid": "4965", "relation": {}, "relation_version_is_last": true, "title": ["Comparative Study of Big Data Predictive Analytics Frameworks"], "weko_shared_id": -1}
Comparative Study of Big Data Predictive Analytics Frameworks
http://hdl.handle.net/20.500.12678/0000004965
http://hdl.handle.net/20.500.12678/0000004965b4c9cae8-3705-4e89-b116-153344b63621
b0f8512a-978a-45b5-9a24-f51b38fedaf6
Name / File | License | Actions |
---|---|---|
proceeding_total-pages-363-369.pdf (3281 Kb)
|
|