MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "a69fab03-7c84-4436-b261-708cefe3f72a"}, "_deposit": {"id": "4943", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4943"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4943", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Extracting and Classifying for Ear Recognition in Biometrics Knowledge", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Ear detection is an important part of an ear recognition system. This paper proposes ear recognition based on Gabor wavelets and Support Vector Machine (SVM). The framework has three steps. In the first step, the ear is detected from an image of the face. In the second step, Gabor wavelets are used to extract ear feature. The Gabor wavelets, whose kernels are similar to the 2D receptive field profiles of the mammalian cortical simple cells, exhibit desirable characteristics of spatial locality and orientation selectivity. In the third step, when the Gabor wavelets features were obtained, classifications were done by SVM. Research of ear recognition and its application is a new subject in the field of authentication. Ear normalization and alignment is a fundamental module in the ear recognition system."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Ear recognition"}, {"interim": "Gabor wavelet"}, {"interim": "support vector machine"}, {"interim": "multi-classification"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-12"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "11088.pdf", "filesize": [{"value": "311 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 311000.0, "url": {"url": "https://meral.edu.mm/record/4943/files/11088.pdf"}, "version_id": "95ae9638-f67b-42b3-bf74-8ee0ebf9be15"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Eleventh International Conference On Computer Applications (ICCA 2013)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Thuzar, Myat"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2013-02-26"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/843"}, "item_title": "Extracting and Classifying for Ear Recognition in Biometrics Knowledge", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004943", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-12"}, "publish_date": "2019-07-12", "publish_status": "0", "recid": "4943", "relation": {}, "relation_version_is_last": true, "title": ["Extracting and Classifying for Ear Recognition in Biometrics Knowledge"], "weko_shared_id": -1}
Extracting and Classifying for Ear Recognition in Biometrics Knowledge
http://hdl.handle.net/20.500.12678/0000004943
http://hdl.handle.net/20.500.12678/0000004943827853fe-0df4-45b3-a653-1b06faa456eb
a69fab03-7c84-4436-b261-708cefe3f72a
Name / File | License | Actions |
---|---|---|
11088.pdf (311 Kb)
|
|
Publication type | ||||||
---|---|---|---|---|---|---|
Article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Extracting and Classifying for Ear Recognition in Biometrics Knowledge | |||||
Language | en | |||||
Publication date | 2013-02-26 | |||||
Authors | ||||||
Thuzar, Myat | ||||||
Description | ||||||
Ear detection is an important part of an ear recognition system. This paper proposes ear recognition based on Gabor wavelets and Support Vector Machine (SVM). The framework has three steps. In the first step, the ear is detected from an image of the face. In the second step, Gabor wavelets are used to extract ear feature. The Gabor wavelets, whose kernels are similar to the 2D receptive field profiles of the mammalian cortical simple cells, exhibit desirable characteristics of spatial locality and orientation selectivity. In the third step, when the Gabor wavelets features were obtained, classifications were done by SVM. Research of ear recognition and its application is a new subject in the field of authentication. Ear normalization and alignment is a fundamental module in the ear recognition system. | ||||||
Keywords | ||||||
Ear recognition, Gabor wavelet, support vector machine, multi-classification | ||||||
Identifier | http://onlineresource.ucsy.edu.mm/handle/123456789/843 | |||||
Journal articles | ||||||
Eleventh International Conference On Computer Applications (ICCA 2013) | ||||||
Conference papers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |