Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "9fe44a92-5413-4f9c-bd56-442165fb7a5a"}, "_deposit": {"id": "4934", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4934"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4934", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Analysis of Defuzzification Methods for Network Intrusion Detection", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Fuzzy logic is appropriated for the intrusion detection problem because many quantitative features are involved in intrusion detection. Fuzzy logic system can handle simultaneously the numerical data and linguistic knowledge. The concept of linguistic variables is used to model the state of the system which is imprecise and uncertain. The purpose of this paper is to analyze the behavior of the intrusion detection on the KDD dataset using the five defuzzification methods. The result shows that the centroid and bisector methods can detect intrusion better than the other methods for intrusion detection. The experiments and evaluations of this paper were performed with the KDD Cup 99 intrusion detection dataset. Simulation results are demonstrated by using MATLAB."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Fuzzy Logic"}, {"interim": "Defuzzification"}, {"interim": "Centroid"}, {"interim": "Bisector"}, {"interim": "Intrusion Detection"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-12"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "11081.pdf", "filesize": [{"value": "471 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 471000.0, "url": {"url": "https://meral.edu.mm/record/4934/files/11081.pdf"}, "version_id": "d4f2177c-ddc7-490b-801b-45341a1992fd"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Eleventh International Conference On Computer Applications (ICCA 2013)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Hlaing, Thuzar"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2013-02-26"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/835"}, "item_title": "Analysis of Defuzzification Methods for Network Intrusion Detection", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004934", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-12"}, "publish_date": "2019-07-12", "publish_status": "0", "recid": "4934", "relation": {}, "relation_version_is_last": true, "title": ["Analysis of Defuzzification Methods for Network Intrusion Detection"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Analysis of Defuzzification Methods for Network Intrusion Detection

http://hdl.handle.net/20.500.12678/0000004934
http://hdl.handle.net/20.500.12678/0000004934
0c98ee6c-b253-4304-8ecb-e755eac3bcef
9fe44a92-5413-4f9c-bd56-442165fb7a5a
None
Preview
Name / File License Actions
11081.pdf 11081.pdf (471 Kb)
Publication type
Article
Upload type
Publication
Title
Title Analysis of Defuzzification Methods for Network Intrusion Detection
Language en
Publication date 2013-02-26
Authors
Hlaing, Thuzar
Description
Fuzzy logic is appropriated for the intrusion detection problem because many quantitative features are involved in intrusion detection. Fuzzy logic system can handle simultaneously the numerical data and linguistic knowledge. The concept of linguistic variables is used to model the state of the system which is imprecise and uncertain. The purpose of this paper is to analyze the behavior of the intrusion detection on the KDD dataset using the five defuzzification methods. The result shows that the centroid and bisector methods can detect intrusion better than the other methods for intrusion detection. The experiments and evaluations of this paper were performed with the KDD Cup 99 intrusion detection dataset. Simulation results are demonstrated by using MATLAB.
Keywords
Fuzzy Logic, Defuzzification, Centroid, Bisector, Intrusion Detection
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/835
Journal articles
Eleventh International Conference On Computer Applications (ICCA 2013)
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 15:32:17.846172
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL