MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "6baf1d66-673d-4e07-b1e4-6c8ee57cf41d"}, "_deposit": {"id": "4881", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4881"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4881", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Analysis of Defuzzification Methods for Network Intrusion Detection", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Fuzzy logic is appropriated for the intrusion detection problem because many quantitative features are involved in intrusion detection. Fuzzy logic system can handle simultaneously the numerical data and linguistic knowledge. The concept of linguistic variables is used to model the state of the system which is imprecise and uncertain. The purpose of this paper is to analyze the behavior of the intrusion detection on the KDD dataset using the five defuzzification methods. The result shows that the centroid and bisector methods can detect intrusion better than the other methods for intrusion detection. The experiments and evaluations of this paper were performed with the KDD Cup 99 intrusion detection dataset. Simulation results are demonstrated by using MATLAB."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Fuzzy Logic"}, {"interim": "Defuzzification"}, {"interim": "Centroid"}, {"interim": "Bisector"}, {"interim": "Intrusion Detection"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-12"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "11081.pdf", "filesize": [{"value": "471 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 471000.0, "url": {"url": "https://meral.edu.mm/record/4881/files/11081.pdf"}, "version_id": "d2516538-f578-4c1a-b9f3-b7cdb582b44b"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Eleventh International Conference On Computer Applications (ICCA 2013)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Hlaing, Thuzar"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2013-02-26"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/776"}, "item_title": "Analysis of Defuzzification Methods for Network Intrusion Detection", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004881", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-12"}, "publish_date": "2019-07-12", "publish_status": "0", "recid": "4881", "relation": {}, "relation_version_is_last": true, "title": ["Analysis of Defuzzification Methods for Network Intrusion Detection"], "weko_shared_id": -1}
Analysis of Defuzzification Methods for Network Intrusion Detection
http://hdl.handle.net/20.500.12678/0000004881
http://hdl.handle.net/20.500.12678/0000004881392489a5-334c-4ee5-8025-7771e770a407
6baf1d66-673d-4e07-b1e4-6c8ee57cf41d
Name / File | License | Actions |
---|---|---|
11081.pdf (471 Kb)
|
|
Publication type | ||||||
---|---|---|---|---|---|---|
Article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Analysis of Defuzzification Methods for Network Intrusion Detection | |||||
Language | en | |||||
Publication date | 2013-02-26 | |||||
Authors | ||||||
Hlaing, Thuzar | ||||||
Description | ||||||
Fuzzy logic is appropriated for the intrusion detection problem because many quantitative features are involved in intrusion detection. Fuzzy logic system can handle simultaneously the numerical data and linguistic knowledge. The concept of linguistic variables is used to model the state of the system which is imprecise and uncertain. The purpose of this paper is to analyze the behavior of the intrusion detection on the KDD dataset using the five defuzzification methods. The result shows that the centroid and bisector methods can detect intrusion better than the other methods for intrusion detection. The experiments and evaluations of this paper were performed with the KDD Cup 99 intrusion detection dataset. Simulation results are demonstrated by using MATLAB. | ||||||
Keywords | ||||||
Fuzzy Logic, Defuzzification, Centroid, Bisector, Intrusion Detection | ||||||
Identifier | http://onlineresource.ucsy.edu.mm/handle/123456789/776 | |||||
Journal articles | ||||||
Eleventh International Conference On Computer Applications (ICCA 2013) | ||||||
Conference papers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |