Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "8ac7a7a1-af3a-423a-804f-8cf31de4937b"}, "_deposit": {"id": "4868", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4868"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4868", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Efficient Action Recognition based on Salient Object Detection", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Action recognition has become an importantresearch topic in the computer vision area. Thispaper presents an efficient action recognitionapproach based on salient object detection. Recently,many features were directly extracted from videoframes; as a result, unsatisfying results wereproduced due to intrinsic textural difference betweenforeground and background. Instead of wholeframes, processing only on salient objects suppressesthe interference of background pixels and also makesthe algorithm to be more efficient. So, the maincontribution of this paper is to focus on salient objectdetection to reflect textural difference. Firstly, salientforeground objects are detected in video frames andonly interest features for such objects are detected.Secondly, we extract features using SURF featuredetector and HOG feature descriptor. Finally, we useKNN classifier for achieving better actionrecognition accuracy. Experiments performed onUCF-Sports action dataset show that our proposedapproach outperforms state-of-the-art actionrecognition methods."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-11"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "proceeding_total-pages-281-287.pdf", "filesize": [{"value": "3399 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 3399000.0, "url": {"url": "https://meral.edu.mm/record/4868/files/proceeding_total-pages-281-287.pdf"}, "version_id": "44c2b3db-d044-441d-b322-5c67a17128b9"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fifteenth International Conference on Computer Applications(ICCA 2017)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Aye, Hnin Mya"}, {"subitem_authors_fullname": "Zaw, Sai Maung Maung"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2017-02-16"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/764"}, "item_title": "Efficient Action Recognition based on Salient Object Detection", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004868", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-11"}, "publish_date": "2019-07-11", "publish_status": "0", "recid": "4868", "relation": {}, "relation_version_is_last": true, "title": ["Efficient Action Recognition based on Salient Object Detection"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Efficient Action Recognition based on Salient Object Detection

http://hdl.handle.net/20.500.12678/0000004868
http://hdl.handle.net/20.500.12678/0000004868
ed5f147d-b94d-4e1b-82e0-113169b43a1d
8ac7a7a1-af3a-423a-804f-8cf31de4937b
None
Preview
Name / File License Actions
proceeding_total-pages-281-287.pdf proceeding_total-pages-281-287.pdf (3399 Kb)
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 15:25:24.784787
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL