Index Link

  • RootNode

Item

{"_buckets": {"deposit": "b84a4adf-aaec-47d8-ac3c-22b44195ff98"}, "_deposit": {"id": "4840", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4840"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4840", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Performance Improvement of Hidden Markov Models for Information Extraction", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Recent research has demonstrated the strong performance of hidden Markov models (HMM) applied to information extraction that the text of populating database slots with corresponding phrases from text documents. Hidden Markov Models (HMMs) are a powerful probabilistic tool for modeling time series data, and have been applied with success to many language-related tasks such as part of speech tagging, speech recognition, text segmentation and topic detection. This paper describes the application of HMMs to another language related task—information extraction—the problem of locating textual sub-segments that answer a particular information need. In this paper, the HMM state transition probabilities and word emission probabilities are learned from labeled training data."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "HMM"}, {"interim": "Segment words"}, {"interim": "Shrinkage"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value": []}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Eleventh International Conference On Computer Applications (ICCA 2013)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Myint, Theint Zarni"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2013-02-26"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/739"}, "item_title": "Performance Improvement of Hidden Markov Models for Information Extraction", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004840", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-11"}, "publish_date": "2019-07-11", "publish_status": "0", "recid": "4840", "relation": {}, "relation_version_is_last": true, "title": ["Performance Improvement of Hidden Markov Models for Information Extraction"], "weko_shared_id": -1}

Performance Improvement of Hidden Markov Models for Information Extraction

http://hdl.handle.net/20.500.12678/0000004840
afe74362-6ab1-446c-b388-6dd69c328e16
b84a4adf-aaec-47d8-ac3c-22b44195ff98
Publication type
Article
Upload type
Publication
Title
Title Performance Improvement of Hidden Markov Models for Information Extraction
Language en
Publication date 2013-02-26
Authors
Myint, Theint Zarni
Description
Recent research has demonstrated the strong performance of hidden Markov models (HMM) applied to information extraction that the text of populating database slots with corresponding phrases from text documents. Hidden Markov Models (HMMs) are a powerful probabilistic tool for modeling time series data, and have been applied with success to many language-related tasks such as part of speech tagging, speech recognition, text segmentation and topic detection. This paper describes the application of HMMs to another language related task—information extraction—the problem of locating textual sub-segments that answer a particular information need. In this paper, the HMM state transition probabilities and word emission probabilities are learned from labeled training data.
Keywords
HMM, Segment words, Shrinkage
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/739
Journal articles
Eleventh International Conference On Computer Applications (ICCA 2013)
Conference papers
Books/reports/chapters
Thesis/dissertations
0
0
views
downloads
Views Downloads

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats