Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "cef0eb0c-b233-4786-8794-7220b3f59bc8"}, "_deposit": {"id": "4808", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4808"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4808", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Context based Indexing to Support Search Engine", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "This system proposes an indexing structure that is built on the basic context document by using semantic suffix tree clustering and context ontology. Context is any information that can be used to characterize the situation of an entity. Semantic suffix tree clustering with context ontology is used to cluster the corpus documents semantically related contexts such as synonyms or hyponyms. Context ontology is used to define a common vocabulary to share context information in a pervasive computing domain. The context of a document can be easily derived using concept of ontology. Context provides extra information to help improve search result relevance. Thus the significance of term for building the index is reduced and the emphasis is laid on the context of the document. This context based index enables retrieval from index on the basis of context rather than keywords. This aids to improve the quality of retrieved result."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "context"}, {"interim": "semantic suffix tree clustering"}, {"interim": "ontology"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value": []}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Eleventh International Conference On Computer Applications (ICCA 2013)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Soe, Thinn Lai"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2013-02-26"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/704"}, "item_title": "Context based Indexing to Support Search Engine", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004808", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-11"}, "publish_date": "2019-07-11", "publish_status": "0", "recid": "4808", "relation": {}, "relation_version_is_last": true, "title": ["Context based Indexing to Support Search Engine"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Context based Indexing to Support Search Engine

http://hdl.handle.net/20.500.12678/0000004808
http://hdl.handle.net/20.500.12678/0000004808
aba94bd3-03e8-4ea0-865e-bce88dae465d
cef0eb0c-b233-4786-8794-7220b3f59bc8
Publication type
Article
Upload type
Publication
Title
Title Context based Indexing to Support Search Engine
Language en
Publication date 2013-02-26
Authors
Soe, Thinn Lai
Description
This system proposes an indexing structure that is built on the basic context document by using semantic suffix tree clustering and context ontology. Context is any information that can be used to characterize the situation of an entity. Semantic suffix tree clustering with context ontology is used to cluster the corpus documents semantically related contexts such as synonyms or hyponyms. Context ontology is used to define a common vocabulary to share context information in a pervasive computing domain. The context of a document can be easily derived using concept of ontology. Context provides extra information to help improve search result relevance. Thus the significance of term for building the index is reduced and the emphasis is laid on the context of the document. This context based index enables retrieval from index on the basis of context rather than keywords. This aids to improve the quality of retrieved result.
Keywords
context, semantic suffix tree clustering, ontology
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/704
Journal articles
Eleventh International Conference On Computer Applications (ICCA 2013)
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 15:22:07.983884
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL