MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "b3a3bf14-ed04-415e-ab9c-679ff99105e5"}, "_deposit": {"id": "4801", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4801"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4801", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Content Driven Tweets Annotation during Natural Disasters", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Nowadays, Twitter, Social Networking Site,becomes most popular microblogging service andpeople have started publishing data on the use of it innatural disasters. Twitter has also created theopportunities for first responders to know the criticalinformation and work effective reactions to impactedcommunities. This paper presents the automatedannotation system that can detect the tweets whichcontain critical information or not. Annotation is doneat tweet level with three labels by using the publiclyavailable annotated datasets. LibLinear classifier isused to build a model for automatic tweets annotation.The annotation system also creates disaster relatedcorpus with new tweets collected from Twitter API andannotated on real time manner. The performance ofthis model is evaluated based on different disasterrelated datasets and new Myanmar_Earthquake_2016dataset derived from Twitter. The experiments show ahigh agreement rate between the annotation of thissystem and the annotators."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value": []}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fifteenth International Conference on Computer Applications(ICCA 2017)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Win, Si Si Mar"}, {"subitem_authors_fullname": "Aung, Than Nwe"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2017-02-16"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/698"}, "item_title": "Content Driven Tweets Annotation during Natural Disasters", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004801", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-11"}, "publish_date": "2019-07-11", "publish_status": "0", "recid": "4801", "relation": {}, "relation_version_is_last": true, "title": ["Content Driven Tweets Annotation during Natural Disasters"], "weko_shared_id": -1}
Content Driven Tweets Annotation during Natural Disasters
http://hdl.handle.net/20.500.12678/0000004801
http://hdl.handle.net/20.500.12678/0000004801