Index Link

  • RootNode

Item

{"_buckets": {"deposit": "1cbb6390-d9aa-4dee-9241-db62ec53fafd"}, "_deposit": {"id": "4790", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4790"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4790", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Analyzing Machine Learning Algorithms to Detect Novel attacks in Network Intrusion Detection System", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "There are many Intrusion Detection System (IDS) based on signatures. If a new attacks, which by definition cannot be in the database of signatures is coming, those system cannot detect. The attackers will have a new way to bypass information system protection. There is just implementation of anomaly intrusion detection system, possible in theory to detect those new attacks. Many researchers try worked on the KDD 99 intrusion detection data set. There are many limitations of these researches such as high false positives and irrelevant alerts in detection of novel attacks (unknown attacks). In this proposed model, try to detect anomalies with high true positive rate and low false positive rate with the most efficient machine-learning algorithms based on decision trees and suggests an improvement to discover known and unknown attacks and show comparison results with these machine learning algorithms. Experimental results prove that the proposed method can get the high accuracy in detection those known and unknown attacks by using WEKA tool."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value": []}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Eleventh International Conference On Computer Applications (ICCA 2013)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Htun, Phyu Thi"}, {"subitem_authors_fullname": "Win, Mya Thidar Myo"}, {"subitem_authors_fullname": "Khaing, Kyaw Thet"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2013-02-26"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/680"}, "item_title": "Analyzing Machine Learning Algorithms to Detect Novel attacks in Network Intrusion Detection System", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004790", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-11"}, "publish_date": "2019-07-11", "publish_status": "0", "recid": "4790", "relation": {}, "relation_version_is_last": true, "title": ["Analyzing Machine Learning Algorithms to Detect Novel attacks in Network Intrusion Detection System"], "weko_shared_id": -1}

Analyzing Machine Learning Algorithms to Detect Novel attacks in Network Intrusion Detection System

http://hdl.handle.net/20.500.12678/0000004790
97e6df82-be4f-45a6-9248-30d950c7a461
1cbb6390-d9aa-4dee-9241-db62ec53fafd
0
0
views
downloads
Views Downloads

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats