Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "cedc0f63-374d-4feb-96fb-284b9038fb62"}, "_deposit": {"id": "4771", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4771"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4771", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Moving Objects Clustering from Big Trajectory Data", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "The mobile communication technologiespenetrate our society and wireless network to detectthe movement of people to generate large amount ofdata mobility including mobile phone call recordsand Global Positioning System (GPS) traces whichcan be characterized as big trajectory data. Theremarkable analytical strength of the massive datacollection trajectory can help to show the complexityof human mobility. The knowledge discovery processis addressed on some of the fundamental issues ofmobility analysts such as the ways people move. Inthis work, the problem of determining the number ofgroups and the members of the trajectory nodeswithin the group from big trajectory data areconsidered. A framework for clustering movingobjects from big trajectory data is designed.Additionally, a distance based clustering algorithm tospecify the number of groups and their identity areproposed. Finally, the proposed methods arepractically evaluated using real Geolife dataset."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "GPS"}, {"interim": "Moving Objects"}, {"interim": "Big Trajectory Data"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value": []}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fifteenth International Conference on Computer Applications(ICCA 2017)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Wai, Khaing Phyo"}, {"subitem_authors_fullname": "Nwe, Nwe"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2017-02-16"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/660"}, "item_title": "Moving Objects Clustering from Big Trajectory Data", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004771", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-09"}, "publish_date": "2019-07-09", "publish_status": "0", "recid": "4771", "relation": {}, "relation_version_is_last": true, "title": ["Moving Objects Clustering from Big Trajectory Data"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Moving Objects Clustering from Big Trajectory Data

http://hdl.handle.net/20.500.12678/0000004771
http://hdl.handle.net/20.500.12678/0000004771
7a768c05-7e15-4337-a568-64dfb81fb63f
cedc0f63-374d-4feb-96fb-284b9038fb62
Publication type
Article
Upload type
Publication
Title
Title Moving Objects Clustering from Big Trajectory Data
Language en
Publication date 2017-02-16
Authors
Wai, Khaing Phyo
Nwe, Nwe
Description
The mobile communication technologiespenetrate our society and wireless network to detectthe movement of people to generate large amount ofdata mobility including mobile phone call recordsand Global Positioning System (GPS) traces whichcan be characterized as big trajectory data. Theremarkable analytical strength of the massive datacollection trajectory can help to show the complexityof human mobility. The knowledge discovery processis addressed on some of the fundamental issues ofmobility analysts such as the ways people move. Inthis work, the problem of determining the number ofgroups and the members of the trajectory nodeswithin the group from big trajectory data areconsidered. A framework for clustering movingobjects from big trajectory data is designed.Additionally, a distance based clustering algorithm tospecify the number of groups and their identity areproposed. Finally, the proposed methods arepractically evaluated using real Geolife dataset.
Keywords
GPS, Moving Objects, Big Trajectory Data
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/660
Journal articles
Fifteenth International Conference on Computer Applications(ICCA 2017)
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 15:20:47.929905
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL