MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "7a828226-dc2b-4129-aeec-bd36d1c7c4c7"}, "_deposit": {"id": "4769", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4769"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4769", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Reducing Error Rate for ASR using Semantic Error Correction Approach", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Many application environments have already usedspeech interface. But the low speech recognition ratemakes it difficult to extend its application to newfields. In the human-computer interaction throughspoken dialogue are being investigated. AutomaticSpeech recognition (ASR) is the process of convertinga spoken speech into text that can be manipulated bythe computer. The state of the art in automatic speechrecognition has reached the point that searching forand extracting information from large speechrepositories. This system presents semantic-orientedapproach to correct both semantic and lexical errors,which is also more accurate for especially domainspecificspeech error correction. This paperdemonstrates the superior performance of thisapproach and some advantages over previous lexicalorientedapproaches by comparing such approaches.Experiments carried out on various speeches inEnglish syllable indicated a successful decrease in thenumber of errors and an improvement in overall errorcorrection rate."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Automatic Speech Recognition (ASR)"}, {"interim": "Semantic oriented approach"}, {"interim": "Lexical oriented approach"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-02"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "12011.pdf", "filesize": [{"value": "151 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 151000.0, "url": {"url": "https://meral.edu.mm/record/4769/files/12011.pdf"}, "version_id": "c9e3c979-0178-44bd-8a93-4704ebb1966a"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Twelfth International Conference On Computer Applications (ICCA 2014)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Myint, Theint Zarni"}, {"subitem_authors_fullname": "Khaing, Myo Kay"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2014-02-17"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/65"}, "item_title": "Reducing Error Rate for ASR using Semantic Error Correction Approach", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004769", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-02"}, "publish_date": "2019-07-02", "publish_status": "0", "recid": "4769", "relation": {}, "relation_version_is_last": true, "title": ["Reducing Error Rate for ASR using Semantic Error Correction Approach"], "weko_shared_id": -1}
Reducing Error Rate for ASR using Semantic Error Correction Approach
http://hdl.handle.net/20.500.12678/0000004769
http://hdl.handle.net/20.500.12678/00000047692d79c4e1-d211-47a4-a887-bf80a5f7acec
7a828226-dc2b-4129-aeec-bd36d1c7c4c7
Name / File | License | Actions |
---|---|---|
12011.pdf (151 Kb)
|
|
Publication type | ||||||
---|---|---|---|---|---|---|
Article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Reducing Error Rate for ASR using Semantic Error Correction Approach | |||||
Language | en | |||||
Publication date | 2014-02-17 | |||||
Authors | ||||||
Myint, Theint Zarni | ||||||
Khaing, Myo Kay | ||||||
Description | ||||||
Many application environments have already usedspeech interface. But the low speech recognition ratemakes it difficult to extend its application to newfields. In the human-computer interaction throughspoken dialogue are being investigated. AutomaticSpeech recognition (ASR) is the process of convertinga spoken speech into text that can be manipulated bythe computer. The state of the art in automatic speechrecognition has reached the point that searching forand extracting information from large speechrepositories. This system presents semantic-orientedapproach to correct both semantic and lexical errors,which is also more accurate for especially domainspecificspeech error correction. This paperdemonstrates the superior performance of thisapproach and some advantages over previous lexicalorientedapproaches by comparing such approaches.Experiments carried out on various speeches inEnglish syllable indicated a successful decrease in thenumber of errors and an improvement in overall errorcorrection rate. | ||||||
Keywords | ||||||
Automatic Speech Recognition (ASR), Semantic oriented approach, Lexical oriented approach | ||||||
Identifier | http://onlineresource.ucsy.edu.mm/handle/123456789/65 | |||||
Journal articles | ||||||
Twelfth International Conference On Computer Applications (ICCA 2014) | ||||||
Conference papers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |